| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542 | import {	BufferGeometry,	Float32BufferAttribute,	Vector3} from '../../../build/three.module.js';import * as BufferGeometryUtils from '../utils/BufferGeometryUtils.js';/** *	Simplification Geometry Modifier *    - based on code and technique *	  - by Stan Melax in 1998 *	  - Progressive Mesh type Polygon Reduction Algorithm *    - http://www.melax.com/polychop/ */const _cb = new Vector3(), _ab = new Vector3();class SimplifyModifier {	constructor() {		if ( BufferGeometryUtils === undefined ) {			throw 'THREE.SimplifyModifier relies on BufferGeometryUtils';		}	}	modify( geometry, count ) {		if ( geometry.isGeometry === true ) {			console.error( 'THREE.SimplifyModifier no longer supports Geometry. Use BufferGeometry instead.' );			return;		}		geometry = geometry.clone();		const attributes = geometry.attributes;		// this modifier can only process indexed and non-indexed geomtries with a position attribute		for ( const name in attributes ) {			if ( name !== 'position' ) geometry.deleteAttribute( name );		}		geometry = BufferGeometryUtils.mergeVertices( geometry );		//		// put data of original geometry in different data structures		//		const vertices = [];		const faces = [];		// add vertices		const positionAttribute = geometry.getAttribute( 'position' );		for ( let i = 0; i < positionAttribute.count; i ++ ) {			const v = new Vector3().fromBufferAttribute( positionAttribute, i );			const vertex = new Vertex( v );			vertices.push( vertex );		}		// add faces		let index = geometry.getIndex();		if ( index !== null ) {			for ( let i = 0; i < index.count; i += 3 ) {				const a = index.getX( i );				const b = index.getX( i + 1 );				const c = index.getX( i + 2 );				const triangle = new Triangle( vertices[ a ], vertices[ b ], vertices[ c ], a, b, c );				faces.push( triangle );			}		} else {			for ( let i = 0; i < positionAttribute.count; i += 3 ) {				const a = i;				const b = i + 1;				const c = i + 2;				const triangle = new Triangle( vertices[ a ], vertices[ b ], vertices[ c ], a, b, c );				faces.push( triangle );			}		}		// compute all edge collapse costs		for ( let i = 0, il = vertices.length; i < il; i ++ ) {			computeEdgeCostAtVertex( vertices[ i ] );		}		let nextVertex;		let z = count;		while ( z -- ) {			nextVertex = minimumCostEdge( vertices );			if ( ! nextVertex ) {				console.log( 'THREE.SimplifyModifier: No next vertex' );				break;			}			collapse( vertices, faces, nextVertex, nextVertex.collapseNeighbor );		}		//		const simplifiedGeometry = new BufferGeometry();		const position = [];		index = [];		//		for ( let i = 0; i < vertices.length; i ++ ) {			const vertex = vertices[ i ].position;			position.push( vertex.x, vertex.y, vertex.z );			// cache final index to GREATLY speed up faces reconstruction			vertices[ i ].id = i;		}		//		for ( let i = 0; i < faces.length; i ++ ) {			const face = faces[ i ];			index.push( face.v1.id, face.v2.id, face.v3.id );		}		//		simplifiedGeometry.setAttribute( 'position', new Float32BufferAttribute( position, 3 ) );		simplifiedGeometry.setIndex( index );		return simplifiedGeometry;	}}function pushIfUnique( array, object ) {	if ( array.indexOf( object ) === - 1 ) array.push( object );}function removeFromArray( array, object ) {	var k = array.indexOf( object );	if ( k > - 1 ) array.splice( k, 1 );}function computeEdgeCollapseCost( u, v ) {	// if we collapse edge uv by moving u to v then how	// much different will the model change, i.e. the "error".	const edgelength = v.position.distanceTo( u.position );	let curvature = 0;	const sideFaces = [];	// find the "sides" triangles that are on the edge uv	for ( let i = 0, il = u.faces.length; i < il; i ++ ) {		const face = u.faces[ i ];		if ( face.hasVertex( v ) ) {			sideFaces.push( face );		}	}	// use the triangle facing most away from the sides	// to determine our curvature term	for ( let i = 0, il = u.faces.length; i < il; i ++ ) {		let minCurvature = 1;		const face = u.faces[ i ];		for ( let j = 0; j < sideFaces.length; j ++ ) {			const sideFace = sideFaces[ j ];			// use dot product of face normals.			const dotProd = face.normal.dot( sideFace.normal );			minCurvature = Math.min( minCurvature, ( 1.001 - dotProd ) / 2 );		}		curvature = Math.max( curvature, minCurvature );	}	// crude approach in attempt to preserve borders	// though it seems not to be totally correct	const borders = 0;	if ( sideFaces.length < 2 ) {		// we add some arbitrary cost for borders,		// borders += 10;		curvature = 1;	}	const amt = edgelength * curvature + borders;	return amt;}function computeEdgeCostAtVertex( v ) {	// compute the edge collapse cost for all edges that start	// from vertex v.  Since we are only interested in reducing	// the object by selecting the min cost edge at each step, we	// only cache the cost of the least cost edge at this vertex	// (in member variable collapse) as well as the value of the	// cost (in member variable collapseCost).	if ( v.neighbors.length === 0 ) {		// collapse if no neighbors.		v.collapseNeighbor = null;		v.collapseCost = - 0.01;		return;	}	v.collapseCost = 100000;	v.collapseNeighbor = null;	// search all neighboring edges for "least cost" edge	for ( let i = 0; i < v.neighbors.length; i ++ ) {		const collapseCost = computeEdgeCollapseCost( v, v.neighbors[ i ] );		if ( ! v.collapseNeighbor ) {			v.collapseNeighbor = v.neighbors[ i ];			v.collapseCost = collapseCost;			v.minCost = collapseCost;			v.totalCost = 0;			v.costCount = 0;		}		v.costCount ++;		v.totalCost += collapseCost;		if ( collapseCost < v.minCost ) {			v.collapseNeighbor = v.neighbors[ i ];			v.minCost = collapseCost;		}	}	// we average the cost of collapsing at this vertex	v.collapseCost = v.totalCost / v.costCount;	// v.collapseCost = v.minCost;}function removeVertex( v, vertices ) {	console.assert( v.faces.length === 0 );	while ( v.neighbors.length ) {		const n = v.neighbors.pop();		removeFromArray( n.neighbors, v );	}	removeFromArray( vertices, v );}function removeFace( f, faces ) {	removeFromArray( faces, f );	if ( f.v1 ) removeFromArray( f.v1.faces, f );	if ( f.v2 ) removeFromArray( f.v2.faces, f );	if ( f.v3 ) removeFromArray( f.v3.faces, f );	// TODO optimize this!	const vs = [ f.v1, f.v2, f.v3 ];	for ( let i = 0; i < 3; i ++ ) {		const v1 = vs[ i ];		const v2 = vs[ ( i + 1 ) % 3 ];		if ( ! v1 || ! v2 ) continue;		v1.removeIfNonNeighbor( v2 );		v2.removeIfNonNeighbor( v1 );	}}function collapse( vertices, faces, u, v ) { // u and v are pointers to vertices of an edge	// Collapse the edge uv by moving vertex u onto v	if ( ! v ) {		// u is a vertex all by itself so just delete it..		removeVertex( u, vertices );		return;	}	const tmpVertices = [];	for ( let i = 0; i < u.neighbors.length; i ++ ) {		tmpVertices.push( u.neighbors[ i ] );	}	// delete triangles on edge uv:	for ( let i = u.faces.length - 1; i >= 0; i -- ) {		if ( u.faces[ i ].hasVertex( v ) ) {			removeFace( u.faces[ i ], faces );		}	}	// update remaining triangles to have v instead of u	for ( let i = u.faces.length - 1; i >= 0; i -- ) {		u.faces[ i ].replaceVertex( u, v );	}	removeVertex( u, vertices );	// recompute the edge collapse costs in neighborhood	for ( let i = 0; i < tmpVertices.length; i ++ ) {		computeEdgeCostAtVertex( tmpVertices[ i ] );	}}function minimumCostEdge( vertices ) {	// O(n * n) approach. TODO optimize this	let least = vertices[ 0 ];	for ( let i = 0; i < vertices.length; i ++ ) {		if ( vertices[ i ].collapseCost < least.collapseCost ) {			least = vertices[ i ];		}	}	return least;}// we use a triangle class to represent structure of face slightly differentlyclass Triangle {	constructor( v1, v2, v3, a, b, c ) {		this.a = a;		this.b = b;		this.c = c;		this.v1 = v1;		this.v2 = v2;		this.v3 = v3;		this.normal = new Vector3();		this.computeNormal();		v1.faces.push( this );		v1.addUniqueNeighbor( v2 );		v1.addUniqueNeighbor( v3 );		v2.faces.push( this );		v2.addUniqueNeighbor( v1 );		v2.addUniqueNeighbor( v3 );		v3.faces.push( this );		v3.addUniqueNeighbor( v1 );		v3.addUniqueNeighbor( v2 );	}	computeNormal() {		const vA = this.v1.position;		const vB = this.v2.position;		const vC = this.v3.position;		_cb.subVectors( vC, vB );		_ab.subVectors( vA, vB );		_cb.cross( _ab ).normalize();		this.normal.copy( _cb );	}	hasVertex( v ) {		return v === this.v1 || v === this.v2 || v === this.v3;	}	replaceVertex( oldv, newv ) {		if ( oldv === this.v1 ) this.v1 = newv;		else if ( oldv === this.v2 ) this.v2 = newv;		else if ( oldv === this.v3 ) this.v3 = newv;		removeFromArray( oldv.faces, this );		newv.faces.push( this );		oldv.removeIfNonNeighbor( this.v1 );		this.v1.removeIfNonNeighbor( oldv );		oldv.removeIfNonNeighbor( this.v2 );		this.v2.removeIfNonNeighbor( oldv );		oldv.removeIfNonNeighbor( this.v3 );		this.v3.removeIfNonNeighbor( oldv );		this.v1.addUniqueNeighbor( this.v2 );		this.v1.addUniqueNeighbor( this.v3 );		this.v2.addUniqueNeighbor( this.v1 );		this.v2.addUniqueNeighbor( this.v3 );		this.v3.addUniqueNeighbor( this.v1 );		this.v3.addUniqueNeighbor( this.v2 );		this.computeNormal();	}}class Vertex {	constructor( v ) {		this.position = v;		this.id = - 1; // external use position in vertices list (for e.g. face generation)		this.faces = []; // faces vertex is connected		this.neighbors = []; // neighbouring vertices aka "adjacentVertices"		// these will be computed in computeEdgeCostAtVertex()		this.collapseCost = 0; // cost of collapsing this vertex, the less the better. aka objdist		this.collapseNeighbor = null; // best candinate for collapsing	}	addUniqueNeighbor( vertex ) {		pushIfUnique( this.neighbors, vertex );	}	removeIfNonNeighbor( n ) {		const neighbors = this.neighbors;		const faces = this.faces;		const offset = neighbors.indexOf( n );		if ( offset === - 1 ) return;		for ( let i = 0; i < faces.length; i ++ ) {			if ( faces[ i ].hasVertex( n ) ) return;		}		neighbors.splice( offset, 1 );	}}export { SimplifyModifier };
 |