| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399 | import {	BufferAttribute,	BufferGeometry,	FileLoader,	Float32BufferAttribute,	Loader,	LoaderUtils,	Vector3} from '../../../build/three.module.js';/** * Description: A THREE loader for STL ASCII files, as created by Solidworks and other CAD programs. * * Supports both binary and ASCII encoded files, with automatic detection of type. * * The loader returns a non-indexed buffer geometry. * * Limitations: *  Binary decoding supports "Magics" color format (http://en.wikipedia.org/wiki/STL_(file_format)#Color_in_binary_STL). *  There is perhaps some question as to how valid it is to always assume little-endian-ness. *  ASCII decoding assumes file is UTF-8. * * Usage: *  const loader = new STLLoader(); *  loader.load( './models/stl/slotted_disk.stl', function ( geometry ) { *    scene.add( new THREE.Mesh( geometry ) ); *  }); * * For binary STLs geometry might contain colors for vertices. To use it: *  // use the same code to load STL as above *  if (geometry.hasColors) { *    material = new THREE.MeshPhongMaterial({ opacity: geometry.alpha, vertexColors: true }); *  } else { .... } *  const mesh = new THREE.Mesh( geometry, material ); * * For ASCII STLs containing multiple solids, each solid is assigned to a different group. * Groups can be used to assign a different color by defining an array of materials with the same length of * geometry.groups and passing it to the Mesh constructor: * * const mesh = new THREE.Mesh( geometry, material ); * * For example: * *  const materials = []; *  const nGeometryGroups = geometry.groups.length; * *  const colorMap = ...; // Some logic to index colors. * *  for (let i = 0; i < nGeometryGroups; i++) { * *		const material = new THREE.MeshPhongMaterial({ *			color: colorMap[i], *			wireframe: false *		}); * *  } * *  materials.push(material); *  const mesh = new THREE.Mesh(geometry, materials); */class STLLoader extends Loader {	constructor( manager ) {		super( manager );	}	load( url, onLoad, onProgress, onError ) {		const scope = this;		const loader = new FileLoader( this.manager );		loader.setPath( this.path );		loader.setResponseType( 'arraybuffer' );		loader.setRequestHeader( this.requestHeader );		loader.setWithCredentials( this.withCredentials );		loader.load( url, function ( text ) {			try {				onLoad( scope.parse( text ) );			} catch ( e ) {				if ( onError ) {					onError( e );				} else {					console.error( e );				}				scope.manager.itemError( url );			}		}, onProgress, onError );	}	parse( data ) {		function isBinary( data ) {			const reader = new DataView( data );			const face_size = ( 32 / 8 * 3 ) + ( ( 32 / 8 * 3 ) * 3 ) + ( 16 / 8 );			const n_faces = reader.getUint32( 80, true );			const expect = 80 + ( 32 / 8 ) + ( n_faces * face_size );			if ( expect === reader.byteLength ) {				return true;			}			// An ASCII STL data must begin with 'solid ' as the first six bytes.			// However, ASCII STLs lacking the SPACE after the 'd' are known to be			// plentiful.  So, check the first 5 bytes for 'solid'.			// Several encodings, such as UTF-8, precede the text with up to 5 bytes:			// https://en.wikipedia.org/wiki/Byte_order_mark#Byte_order_marks_by_encoding			// Search for "solid" to start anywhere after those prefixes.			// US-ASCII ordinal values for 's', 'o', 'l', 'i', 'd'			const solid = [ 115, 111, 108, 105, 100 ];			for ( let off = 0; off < 5; off ++ ) {				// If "solid" text is matched to the current offset, declare it to be an ASCII STL.				if ( matchDataViewAt( solid, reader, off ) ) return false;			}			// Couldn't find "solid" text at the beginning; it is binary STL.			return true;		}		function matchDataViewAt( query, reader, offset ) {			// Check if each byte in query matches the corresponding byte from the current offset			for ( let i = 0, il = query.length; i < il; i ++ ) {				if ( query[ i ] !== reader.getUint8( offset + i, false ) ) return false;			}			return true;		}		function parseBinary( data ) {			const reader = new DataView( data );			const faces = reader.getUint32( 80, true );			let r, g, b, hasColors = false, colors;			let defaultR, defaultG, defaultB, alpha;			// process STL header			// check for default color in header ("COLOR=rgba" sequence).			for ( let index = 0; index < 80 - 10; index ++ ) {				if ( ( reader.getUint32( index, false ) == 0x434F4C4F /*COLO*/ ) &&					( reader.getUint8( index + 4 ) == 0x52 /*'R'*/ ) &&					( reader.getUint8( index + 5 ) == 0x3D /*'='*/ ) ) {					hasColors = true;					colors = new Float32Array( faces * 3 * 3 );					defaultR = reader.getUint8( index + 6 ) / 255;					defaultG = reader.getUint8( index + 7 ) / 255;					defaultB = reader.getUint8( index + 8 ) / 255;					alpha = reader.getUint8( index + 9 ) / 255;				}			}			const dataOffset = 84;			const faceLength = 12 * 4 + 2;			const geometry = new BufferGeometry();			const vertices = new Float32Array( faces * 3 * 3 );			const normals = new Float32Array( faces * 3 * 3 );			for ( let face = 0; face < faces; face ++ ) {				const start = dataOffset + face * faceLength;				const normalX = reader.getFloat32( start, true );				const normalY = reader.getFloat32( start + 4, true );				const normalZ = reader.getFloat32( start + 8, true );				if ( hasColors ) {					const packedColor = reader.getUint16( start + 48, true );					if ( ( packedColor & 0x8000 ) === 0 ) {						// facet has its own unique color						r = ( packedColor & 0x1F ) / 31;						g = ( ( packedColor >> 5 ) & 0x1F ) / 31;						b = ( ( packedColor >> 10 ) & 0x1F ) / 31;					} else {						r = defaultR;						g = defaultG;						b = defaultB;					}				}				for ( let i = 1; i <= 3; i ++ ) {					const vertexstart = start + i * 12;					const componentIdx = ( face * 3 * 3 ) + ( ( i - 1 ) * 3 );					vertices[ componentIdx ] = reader.getFloat32( vertexstart, true );					vertices[ componentIdx + 1 ] = reader.getFloat32( vertexstart + 4, true );					vertices[ componentIdx + 2 ] = reader.getFloat32( vertexstart + 8, true );					normals[ componentIdx ] = normalX;					normals[ componentIdx + 1 ] = normalY;					normals[ componentIdx + 2 ] = normalZ;					if ( hasColors ) {						colors[ componentIdx ] = r;						colors[ componentIdx + 1 ] = g;						colors[ componentIdx + 2 ] = b;					}				}			}			geometry.setAttribute( 'position', new BufferAttribute( vertices, 3 ) );			geometry.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );			if ( hasColors ) {				geometry.setAttribute( 'color', new BufferAttribute( colors, 3 ) );				geometry.hasColors = true;				geometry.alpha = alpha;			}			return geometry;		}		function parseASCII( data ) {			const geometry = new BufferGeometry();			const patternSolid = /solid([\s\S]*?)endsolid/g;			const patternFace = /facet([\s\S]*?)endfacet/g;			let faceCounter = 0;			const patternFloat = /[\s]+([+-]?(?:\d*)(?:\.\d*)?(?:[eE][+-]?\d+)?)/.source;			const patternVertex = new RegExp( 'vertex' + patternFloat + patternFloat + patternFloat, 'g' );			const patternNormal = new RegExp( 'normal' + patternFloat + patternFloat + patternFloat, 'g' );			const vertices = [];			const normals = [];			const normal = new Vector3();			let result;			let groupCount = 0;			let startVertex = 0;			let endVertex = 0;			while ( ( result = patternSolid.exec( data ) ) !== null ) {				startVertex = endVertex;				const solid = result[ 0 ];				while ( ( result = patternFace.exec( solid ) ) !== null ) {					let vertexCountPerFace = 0;					let normalCountPerFace = 0;					const text = result[ 0 ];					while ( ( result = patternNormal.exec( text ) ) !== null ) {						normal.x = parseFloat( result[ 1 ] );						normal.y = parseFloat( result[ 2 ] );						normal.z = parseFloat( result[ 3 ] );						normalCountPerFace ++;					}					while ( ( result = patternVertex.exec( text ) ) !== null ) {						vertices.push( parseFloat( result[ 1 ] ), parseFloat( result[ 2 ] ), parseFloat( result[ 3 ] ) );						normals.push( normal.x, normal.y, normal.z );						vertexCountPerFace ++;						endVertex ++;					}					// every face have to own ONE valid normal					if ( normalCountPerFace !== 1 ) {						console.error( 'THREE.STLLoader: Something isn\'t right with the normal of face number ' + faceCounter );					}					// each face have to own THREE valid vertices					if ( vertexCountPerFace !== 3 ) {						console.error( 'THREE.STLLoader: Something isn\'t right with the vertices of face number ' + faceCounter );					}					faceCounter ++;				}				const start = startVertex;				const count = endVertex - startVertex;				geometry.addGroup( start, count, groupCount );				groupCount ++;			}			geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );			geometry.setAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );			return geometry;		}		function ensureString( buffer ) {			if ( typeof buffer !== 'string' ) {				return LoaderUtils.decodeText( new Uint8Array( buffer ) );			}			return buffer;		}		function ensureBinary( buffer ) {			if ( typeof buffer === 'string' ) {				const array_buffer = new Uint8Array( buffer.length );				for ( let i = 0; i < buffer.length; i ++ ) {					array_buffer[ i ] = buffer.charCodeAt( i ) & 0xff; // implicitly assumes little-endian				}				return array_buffer.buffer || array_buffer;			} else {				return buffer;			}		}		// start		const binData = ensureBinary( data );		return isBinary( binData ) ? parseBinary( binData ) : parseASCII( ensureString( data ) );	}}export { STLLoader };
 |