| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 | ( function () {	/** * Generates 2D-Coordinates in a very fast way. * * Based on work by: * @link http://www.openprocessing.org/sketch/15493 * * @param center     Center of Hilbert curve. * @param size       Total width of Hilbert curve. * @param iterations Number of subdivisions. * @param v0         Corner index -X, -Z. * @param v1         Corner index -X, +Z. * @param v2         Corner index +X, +Z. * @param v3         Corner index +X, -Z. */	function hilbert2D( center = new THREE.Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3 ) {		const half = size / 2;		const vec_s = [ new THREE.Vector3( center.x - half, center.y, center.z - half ), new THREE.Vector3( center.x - half, center.y, center.z + half ), new THREE.Vector3( center.x + half, center.y, center.z + half ), new THREE.Vector3( center.x + half, center.y, center.z - half ) ];		const vec = [ vec_s[ v0 ], vec_s[ v1 ], vec_s[ v2 ], vec_s[ v3 ] ]; // Recurse iterations		if ( 0 <= -- iterations ) {			const tmp = [];			Array.prototype.push.apply( tmp, hilbert2D( vec[ 0 ], half, iterations, v0, v3, v2, v1 ) );			Array.prototype.push.apply( tmp, hilbert2D( vec[ 1 ], half, iterations, v0, v1, v2, v3 ) );			Array.prototype.push.apply( tmp, hilbert2D( vec[ 2 ], half, iterations, v0, v1, v2, v3 ) );			Array.prototype.push.apply( tmp, hilbert2D( vec[ 3 ], half, iterations, v2, v1, v0, v3 ) ); // Return recursive call			return tmp;		} // Return complete Hilbert Curve.		return vec;	}	/** * Generates 3D-Coordinates in a very fast way. * * Based on work by: * @link http://www.openprocessing.org/visuals/?visualID=15599 * * @param center     Center of Hilbert curve. * @param size       Total width of Hilbert curve. * @param iterations Number of subdivisions. * @param v0         Corner index -X, +Y, -Z. * @param v1         Corner index -X, +Y, +Z. * @param v2         Corner index -X, -Y, +Z. * @param v3         Corner index -X, -Y, -Z. * @param v4         Corner index +X, -Y, -Z. * @param v5         Corner index +X, -Y, +Z. * @param v6         Corner index +X, +Y, +Z. * @param v7         Corner index +X, +Y, -Z. */	function hilbert3D( center = new THREE.Vector3( 0, 0, 0 ), size = 10, iterations = 1, v0 = 0, v1 = 1, v2 = 2, v3 = 3, v4 = 4, v5 = 5, v6 = 6, v7 = 7 ) {		// Default Vars		const half = size / 2;		const vec_s = [ new THREE.Vector3( center.x - half, center.y + half, center.z - half ), new THREE.Vector3( center.x - half, center.y + half, center.z + half ), new THREE.Vector3( center.x - half, center.y - half, center.z + half ), new THREE.Vector3( center.x - half, center.y - half, center.z - half ), new THREE.Vector3( center.x + half, center.y - half, center.z - half ), new THREE.Vector3( center.x + half, center.y - half, center.z + half ), new THREE.Vector3( center.x + half, center.y + half, center.z + half ), new THREE.Vector3( center.x + half, center.y + half, center.z - half ) ];		const vec = [ vec_s[ v0 ], vec_s[ v1 ], vec_s[ v2 ], vec_s[ v3 ], vec_s[ v4 ], vec_s[ v5 ], vec_s[ v6 ], vec_s[ v7 ] ]; // Recurse iterations		if ( -- iterations >= 0 ) {			const tmp = [];			Array.prototype.push.apply( tmp, hilbert3D( vec[ 0 ], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1 ) );			Array.prototype.push.apply( tmp, hilbert3D( vec[ 1 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );			Array.prototype.push.apply( tmp, hilbert3D( vec[ 2 ], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3 ) );			Array.prototype.push.apply( tmp, hilbert3D( vec[ 3 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );			Array.prototype.push.apply( tmp, hilbert3D( vec[ 4 ], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5 ) );			Array.prototype.push.apply( tmp, hilbert3D( vec[ 5 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );			Array.prototype.push.apply( tmp, hilbert3D( vec[ 6 ], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7 ) );			Array.prototype.push.apply( tmp, hilbert3D( vec[ 7 ], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7 ) ); // Return recursive call			return tmp;		} // Return complete Hilbert Curve.		return vec;	}	/** * Generates a Gosper curve (lying in the XY plane) * * https://gist.github.com/nitaku/6521802 * * @param size The size of a single gosper island. */	function gosper( size = 1 ) {		function fractalize( config ) {			let output;			let input = config.axiom;			for ( let i = 0, il = config.steps; 0 <= il ? i < il : i > il; 0 <= il ? i ++ : i -- ) {				output = '';				for ( let j = 0, jl = input.length; j < jl; j ++ ) {					const char = input[ j ];					if ( char in config.rules ) {						output += config.rules[ char ];					} else {						output += char;					}				}				input = output;			}			return output;		}		function toPoints( config ) {			let currX = 0,				currY = 0;			let angle = 0;			const path = [ 0, 0, 0 ];			const fractal = config.fractal;			for ( let i = 0, l = fractal.length; i < l; i ++ ) {				const char = fractal[ i ];				if ( char === '+' ) {					angle += config.angle;				} else if ( char === '-' ) {					angle -= config.angle;				} else if ( char === 'F' ) {					currX += config.size * Math.cos( angle );					currY += - config.size * Math.sin( angle );					path.push( currX, currY, 0 );				}			}			return path;		} //		const gosper = fractalize( {			axiom: 'A',			steps: 4,			rules: {				A: 'A+BF++BF-FA--FAFA-BF+',				B: '-FA+BFBF++BF+FA--FA-B'			}		} );		const points = toPoints( {			fractal: gosper,			size: size,			angle: Math.PI / 3 // 60 degrees		} );		return points;	}	THREE.GeometryUtils = {};	THREE.GeometryUtils.gosper = gosper;	THREE.GeometryUtils.hilbert2D = hilbert2D;	THREE.GeometryUtils.hilbert3D = hilbert3D;} )();
 |