| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444 | // Ported from Stefan Gustavson's java implementation// http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf// Read Stefan's excellent paper for details on how this code works.//// Sean McCullough banksean@gmail.com//// Added 4D noise/** * You can pass in a random number generator object if you like. * It is assumed to have a random() method. */class SimplexNoise {	constructor( r = Math ) {		this.grad3 = [[ 1, 1, 0 ], [ - 1, 1, 0 ], [ 1, - 1, 0 ], [ - 1, - 1, 0 ],			[ 1, 0, 1 ], [ - 1, 0, 1 ], [ 1, 0, - 1 ], [ - 1, 0, - 1 ],			[ 0, 1, 1 ], [ 0, - 1, 1 ], [ 0, 1, - 1 ], [ 0, - 1, - 1 ]];		this.grad4 = [[ 0, 1, 1, 1 ], [ 0, 1, 1, - 1 ], [ 0, 1, - 1, 1 ], [ 0, 1, - 1, - 1 ],			[ 0, - 1, 1, 1 ], [ 0, - 1, 1, - 1 ], [ 0, - 1, - 1, 1 ], [ 0, - 1, - 1, - 1 ],			[ 1, 0, 1, 1 ], [ 1, 0, 1, - 1 ], [ 1, 0, - 1, 1 ], [ 1, 0, - 1, - 1 ],			[ - 1, 0, 1, 1 ], [ - 1, 0, 1, - 1 ], [ - 1, 0, - 1, 1 ], [ - 1, 0, - 1, - 1 ],			[ 1, 1, 0, 1 ], [ 1, 1, 0, - 1 ], [ 1, - 1, 0, 1 ], [ 1, - 1, 0, - 1 ],			[ - 1, 1, 0, 1 ], [ - 1, 1, 0, - 1 ], [ - 1, - 1, 0, 1 ], [ - 1, - 1, 0, - 1 ],			[ 1, 1, 1, 0 ], [ 1, 1, - 1, 0 ], [ 1, - 1, 1, 0 ], [ 1, - 1, - 1, 0 ],			[ - 1, 1, 1, 0 ], [ - 1, 1, - 1, 0 ], [ - 1, - 1, 1, 0 ], [ - 1, - 1, - 1, 0 ]];		this.p = [];		for ( let i = 0; i < 256; i ++ ) {			this.p[ i ] = Math.floor( r.random() * 256 );		}		// To remove the need for index wrapping, double the permutation table length		this.perm = [];		for ( let i = 0; i < 512; i ++ ) {			this.perm[ i ] = this.p[ i & 255 ];		}		// A lookup table to traverse the simplex around a given point in 4D.		// Details can be found where this table is used, in the 4D noise method.		this.simplex = [			[ 0, 1, 2, 3 ], [ 0, 1, 3, 2 ], [ 0, 0, 0, 0 ], [ 0, 2, 3, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 2, 3, 0 ],			[ 0, 2, 1, 3 ], [ 0, 0, 0, 0 ], [ 0, 3, 1, 2 ], [ 0, 3, 2, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 3, 2, 0 ],			[ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ],			[ 1, 2, 0, 3 ], [ 0, 0, 0, 0 ], [ 1, 3, 0, 2 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 3, 0, 1 ], [ 2, 3, 1, 0 ],			[ 1, 0, 2, 3 ], [ 1, 0, 3, 2 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 0, 3, 1 ], [ 0, 0, 0, 0 ], [ 2, 1, 3, 0 ],			[ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ],			[ 2, 0, 1, 3 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 3, 0, 1, 2 ], [ 3, 0, 2, 1 ], [ 0, 0, 0, 0 ], [ 3, 1, 2, 0 ],			[ 2, 1, 0, 3 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 3, 1, 0, 2 ], [ 0, 0, 0, 0 ], [ 3, 2, 0, 1 ], [ 3, 2, 1, 0 ]];	}	dot( g, x, y ) {		return g[ 0 ] * x + g[ 1 ] * y;	}	dot3( g, x, y, z ) {		return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z;	}	dot4( g, x, y, z, w ) {		return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z + g[ 3 ] * w;	}	noise( xin, yin ) {		let n0; // Noise contributions from the three corners		let n1;		let n2;		// Skew the input space to determine which simplex cell we're in		const F2 = 0.5 * ( Math.sqrt( 3.0 ) - 1.0 );		const s = ( xin + yin ) * F2; // Hairy factor for 2D		const i = Math.floor( xin + s );		const j = Math.floor( yin + s );		const G2 = ( 3.0 - Math.sqrt( 3.0 ) ) / 6.0;		const t = ( i + j ) * G2;		const X0 = i - t; // Unskew the cell origin back to (x,y) space		const Y0 = j - t;		const x0 = xin - X0; // The x,y distances from the cell origin		const y0 = yin - Y0;		// For the 2D case, the simplex shape is an equilateral triangle.		// Determine which simplex we are in.		let i1; // Offsets for second (middle) corner of simplex in (i,j) coords		let j1;		if ( x0 > y0 ) {			i1 = 1; j1 = 0;			// lower triangle, XY order: (0,0)->(1,0)->(1,1)		}	else {			i1 = 0; j1 = 1;		} // upper triangle, YX order: (0,0)->(0,1)->(1,1)		// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and		// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where		// c = (3-sqrt(3))/6		const x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords		const y1 = y0 - j1 + G2;		const x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords		const y2 = y0 - 1.0 + 2.0 * G2;		// Work out the hashed gradient indices of the three simplex corners		const ii = i & 255;		const jj = j & 255;		const gi0 = this.perm[ ii + this.perm[ jj ] ] % 12;		const gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 ] ] % 12;		const gi2 = this.perm[ ii + 1 + this.perm[ jj + 1 ] ] % 12;		// Calculate the contribution from the three corners		let t0 = 0.5 - x0 * x0 - y0 * y0;		if ( t0 < 0 ) n0 = 0.0;		else {			t0 *= t0;			n0 = t0 * t0 * this.dot( this.grad3[ gi0 ], x0, y0 ); // (x,y) of grad3 used for 2D gradient		}		let t1 = 0.5 - x1 * x1 - y1 * y1;		if ( t1 < 0 ) n1 = 0.0;		else {			t1 *= t1;			n1 = t1 * t1 * this.dot( this.grad3[ gi1 ], x1, y1 );		}		let t2 = 0.5 - x2 * x2 - y2 * y2;		if ( t2 < 0 ) n2 = 0.0;		else {			t2 *= t2;			n2 = t2 * t2 * this.dot( this.grad3[ gi2 ], x2, y2 );		}		// Add contributions from each corner to get the final noise value.		// The result is scaled to return values in the interval [-1,1].		return 70.0 * ( n0 + n1 + n2 );	}	// 3D simplex noise	noise3d( xin, yin, zin ) {		let n0; // Noise contributions from the four corners		let n1;		let n2;		let n3;		// Skew the input space to determine which simplex cell we're in		const F3 = 1.0 / 3.0;		const s = ( xin + yin + zin ) * F3; // Very nice and simple skew factor for 3D		const i = Math.floor( xin + s );		const j = Math.floor( yin + s );		const k = Math.floor( zin + s );		const G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too		const t = ( i + j + k ) * G3;		const X0 = i - t; // Unskew the cell origin back to (x,y,z) space		const Y0 = j - t;		const Z0 = k - t;		const x0 = xin - X0; // The x,y,z distances from the cell origin		const y0 = yin - Y0;		const z0 = zin - Z0;		// For the 3D case, the simplex shape is a slightly irregular tetrahedron.		// Determine which simplex we are in.		let i1; // Offsets for second corner of simplex in (i,j,k) coords		let j1;		let k1;		let i2; // Offsets for third corner of simplex in (i,j,k) coords		let j2;		let k2;		if ( x0 >= y0 ) {			if ( y0 >= z0 ) {				i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0;				// X Y Z order			} else if ( x0 >= z0 ) {				i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1;				// X Z Y order			} else {				i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1;			} // Z X Y order		} else { // x0<y0			if ( y0 < z0 ) {				i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1;				// Z Y X order			} else if ( x0 < z0 ) {				i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1;				// Y Z X order			} else {				i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0;			} // Y X Z order		}		// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),		// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and		// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where		// c = 1/6.		const x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords		const y1 = y0 - j1 + G3;		const z1 = z0 - k1 + G3;		const x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords		const y2 = y0 - j2 + 2.0 * G3;		const z2 = z0 - k2 + 2.0 * G3;		const x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords		const y3 = y0 - 1.0 + 3.0 * G3;		const z3 = z0 - 1.0 + 3.0 * G3;		// Work out the hashed gradient indices of the four simplex corners		const ii = i & 255;		const jj = j & 255;		const kk = k & 255;		const gi0 = this.perm[ ii + this.perm[ jj + this.perm[ kk ] ] ] % 12;		const gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 + this.perm[ kk + k1 ] ] ] % 12;		const gi2 = this.perm[ ii + i2 + this.perm[ jj + j2 + this.perm[ kk + k2 ] ] ] % 12;		const gi3 = this.perm[ ii + 1 + this.perm[ jj + 1 + this.perm[ kk + 1 ] ] ] % 12;		// Calculate the contribution from the four corners		let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;		if ( t0 < 0 ) n0 = 0.0;		else {			t0 *= t0;			n0 = t0 * t0 * this.dot3( this.grad3[ gi0 ], x0, y0, z0 );		}		let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;		if ( t1 < 0 ) n1 = 0.0;		else {			t1 *= t1;			n1 = t1 * t1 * this.dot3( this.grad3[ gi1 ], x1, y1, z1 );		}		let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;		if ( t2 < 0 ) n2 = 0.0;		else {			t2 *= t2;			n2 = t2 * t2 * this.dot3( this.grad3[ gi2 ], x2, y2, z2 );		}		let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;		if ( t3 < 0 ) n3 = 0.0;		else {			t3 *= t3;			n3 = t3 * t3 * this.dot3( this.grad3[ gi3 ], x3, y3, z3 );		}		// Add contributions from each corner to get the final noise value.		// The result is scaled to stay just inside [-1,1]		return 32.0 * ( n0 + n1 + n2 + n3 );	}	// 4D simplex noise	noise4d( x, y, z, w ) {		// For faster and easier lookups		const grad4 = this.grad4;		const simplex = this.simplex;		const perm = this.perm;		// The skewing and unskewing factors are hairy again for the 4D case		const F4 = ( Math.sqrt( 5.0 ) - 1.0 ) / 4.0;		const G4 = ( 5.0 - Math.sqrt( 5.0 ) ) / 20.0;		let n0; // Noise contributions from the five corners		let n1;		let n2;		let n3;		let n4;		// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in		const s = ( x + y + z + w ) * F4; // Factor for 4D skewing		const i = Math.floor( x + s );		const j = Math.floor( y + s );		const k = Math.floor( z + s );		const l = Math.floor( w + s );		const t = ( i + j + k + l ) * G4; // Factor for 4D unskewing		const X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space		const Y0 = j - t;		const Z0 = k - t;		const W0 = l - t;		const x0 = x - X0; // The x,y,z,w distances from the cell origin		const y0 = y - Y0;		const z0 = z - Z0;		const w0 = w - W0;		// For the 4D case, the simplex is a 4D shape I won't even try to describe.		// To find out which of the 24 possible simplices we're in, we need to		// determine the magnitude ordering of x0, y0, z0 and w0.		// The method below is a good way of finding the ordering of x,y,z,w and		// then find the correct traversal order for the simplex we’re in.		// First, six pair-wise comparisons are performed between each possible pair		// of the four coordinates, and the results are used to add up binary bits		// for an integer index.		const c1 = ( x0 > y0 ) ? 32 : 0;		const c2 = ( x0 > z0 ) ? 16 : 0;		const c3 = ( y0 > z0 ) ? 8 : 0;		const c4 = ( x0 > w0 ) ? 4 : 0;		const c5 = ( y0 > w0 ) ? 2 : 0;		const c6 = ( z0 > w0 ) ? 1 : 0;		const c = c1 + c2 + c3 + c4 + c5 + c6;		// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.		// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w		// impossible. Only the 24 indices which have non-zero entries make any sense.		// We use a thresholding to set the coordinates in turn from the largest magnitude.		// The number 3 in the "simplex" array is at the position of the largest coordinate.		const i1 = simplex[ c ][ 0 ] >= 3 ? 1 : 0;		const j1 = simplex[ c ][ 1 ] >= 3 ? 1 : 0;		const k1 = simplex[ c ][ 2 ] >= 3 ? 1 : 0;		const l1 = simplex[ c ][ 3 ] >= 3 ? 1 : 0;		// The number 2 in the "simplex" array is at the second largest coordinate.		const i2 = simplex[ c ][ 0 ] >= 2 ? 1 : 0;		const j2 = simplex[ c ][ 1 ] >= 2 ? 1 : 0;		const k2 = simplex[ c ][ 2 ] >= 2 ? 1 : 0;		const l2 = simplex[ c ][ 3 ] >= 2 ? 1 : 0;		// The number 1 in the "simplex" array is at the second smallest coordinate.		const i3 = simplex[ c ][ 0 ] >= 1 ? 1 : 0;		const j3 = simplex[ c ][ 1 ] >= 1 ? 1 : 0;		const k3 = simplex[ c ][ 2 ] >= 1 ? 1 : 0;		const l3 = simplex[ c ][ 3 ] >= 1 ? 1 : 0;		// The fifth corner has all coordinate offsets = 1, so no need to look that up.		const x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords		const y1 = y0 - j1 + G4;		const z1 = z0 - k1 + G4;		const w1 = w0 - l1 + G4;		const x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords		const y2 = y0 - j2 + 2.0 * G4;		const z2 = z0 - k2 + 2.0 * G4;		const w2 = w0 - l2 + 2.0 * G4;		const x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords		const y3 = y0 - j3 + 3.0 * G4;		const z3 = z0 - k3 + 3.0 * G4;		const w3 = w0 - l3 + 3.0 * G4;		const x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords		const y4 = y0 - 1.0 + 4.0 * G4;		const z4 = z0 - 1.0 + 4.0 * G4;		const w4 = w0 - 1.0 + 4.0 * G4;		// Work out the hashed gradient indices of the five simplex corners		const ii = i & 255;		const jj = j & 255;		const kk = k & 255;		const ll = l & 255;		const gi0 = perm[ ii + perm[ jj + perm[ kk + perm[ ll ] ] ] ] % 32;		const gi1 = perm[ ii + i1 + perm[ jj + j1 + perm[ kk + k1 + perm[ ll + l1 ] ] ] ] % 32;		const gi2 = perm[ ii + i2 + perm[ jj + j2 + perm[ kk + k2 + perm[ ll + l2 ] ] ] ] % 32;		const gi3 = perm[ ii + i3 + perm[ jj + j3 + perm[ kk + k3 + perm[ ll + l3 ] ] ] ] % 32;		const gi4 = perm[ ii + 1 + perm[ jj + 1 + perm[ kk + 1 + perm[ ll + 1 ] ] ] ] % 32;		// Calculate the contribution from the five corners		let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;		if ( t0 < 0 ) n0 = 0.0;		else {			t0 *= t0;			n0 = t0 * t0 * this.dot4( grad4[ gi0 ], x0, y0, z0, w0 );		}		let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;		if ( t1 < 0 ) n1 = 0.0;		else {			t1 *= t1;			n1 = t1 * t1 * this.dot4( grad4[ gi1 ], x1, y1, z1, w1 );		}		let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;		if ( t2 < 0 ) n2 = 0.0;		else {			t2 *= t2;			n2 = t2 * t2 * this.dot4( grad4[ gi2 ], x2, y2, z2, w2 );		}		let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;		if ( t3 < 0 ) n3 = 0.0;		else {			t3 *= t3;			n3 = t3 * t3 * this.dot4( grad4[ gi3 ], x3, y3, z3, w3 );		}		let t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;		if ( t4 < 0 ) n4 = 0.0;		else {			t4 *= t4;			n4 = t4 * t4 * this.dot4( grad4[ gi4 ], x4, y4, z4, w4 );		}		// Sum up and scale the result to cover the range [-1,1]		return 27.0 * ( n0 + n1 + n2 + n3 + n4 );	}}export { SimplexNoise };
 |