| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 | ( function () {	/** * Generate a texture that represents the luminosity of the current scene, adapted over time * to simulate the optic nerve responding to the amount of light it is receiving. * Based on a GDC2007 presentation by Wolfgang Engel titled "Post-Processing Pipeline" * * Full-screen tone-mapping shader based on http://www.graphics.cornell.edu/~jaf/publications/sig02_paper.pdf */	class AdaptiveToneMappingPass extends THREE.Pass {		constructor( adaptive, resolution ) {			super();			this.resolution = resolution !== undefined ? resolution : 256;			this.needsInit = true;			this.adaptive = adaptive !== undefined ? !! adaptive : true;			this.luminanceRT = null;			this.previousLuminanceRT = null;			this.currentLuminanceRT = null;			if ( THREE.CopyShader === undefined ) console.error( 'THREE.AdaptiveToneMappingPass relies on THREE.CopyShader' );			const copyShader = THREE.CopyShader;			this.copyUniforms = THREE.UniformsUtils.clone( copyShader.uniforms );			this.materialCopy = new THREE.ShaderMaterial( {				uniforms: this.copyUniforms,				vertexShader: copyShader.vertexShader,				fragmentShader: copyShader.fragmentShader,				blending: THREE.NoBlending,				depthTest: false			} );			if ( THREE.LuminosityShader === undefined ) console.error( 'THREE.AdaptiveToneMappingPass relies on THREE.LuminosityShader' );			this.materialLuminance = new THREE.ShaderMaterial( {				uniforms: THREE.UniformsUtils.clone( THREE.LuminosityShader.uniforms ),				vertexShader: THREE.LuminosityShader.vertexShader,				fragmentShader: THREE.LuminosityShader.fragmentShader,				blending: THREE.NoBlending			} );			this.adaptLuminanceShader = {				defines: {					'MIP_LEVEL_1X1': ( Math.log( this.resolution ) / Math.log( 2.0 ) ).toFixed( 1 )				},				uniforms: {					'lastLum': {						value: null					},					'currentLum': {						value: null					},					'minLuminance': {						value: 0.01					},					'delta': {						value: 0.016					},					'tau': {						value: 1.0					}				},				vertexShader: `varying vec2 vUv;				void main() {					vUv = uv;					gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );				}`,				fragmentShader: `varying vec2 vUv;				uniform sampler2D lastLum;				uniform sampler2D currentLum;				uniform float minLuminance;				uniform float delta;				uniform float tau;				void main() {					vec4 lastLum = texture2D( lastLum, vUv, MIP_LEVEL_1X1 );					vec4 currentLum = texture2D( currentLum, vUv, MIP_LEVEL_1X1 );					float fLastLum = max( minLuminance, lastLum.r );					float fCurrentLum = max( minLuminance, currentLum.r );					//The adaption seems to work better in extreme lighting differences					//if the input luminance is squared.					fCurrentLum *= fCurrentLum;					// Adapt the luminance using Pattanaik's technique					float fAdaptedLum = fLastLum + (fCurrentLum - fLastLum) * (1.0 - exp(-delta * tau));					// "fAdaptedLum = sqrt(fAdaptedLum);					gl_FragColor.r = fAdaptedLum;				}`			};			this.materialAdaptiveLum = new THREE.ShaderMaterial( {				uniforms: THREE.UniformsUtils.clone( this.adaptLuminanceShader.uniforms ),				vertexShader: this.adaptLuminanceShader.vertexShader,				fragmentShader: this.adaptLuminanceShader.fragmentShader,				defines: Object.assign( {}, this.adaptLuminanceShader.defines ),				blending: THREE.NoBlending			} );			if ( THREE.ToneMapShader === undefined ) console.error( 'THREE.AdaptiveToneMappingPass relies on THREE.ToneMapShader' );			this.materialToneMap = new THREE.ShaderMaterial( {				uniforms: THREE.UniformsUtils.clone( THREE.ToneMapShader.uniforms ),				vertexShader: THREE.ToneMapShader.vertexShader,				fragmentShader: THREE.ToneMapShader.fragmentShader,				blending: THREE.NoBlending			} );			this.fsQuad = new THREE.FullScreenQuad( null );		}		render( renderer, writeBuffer, readBuffer, deltaTime			/*, maskActive*/		) {			if ( this.needsInit ) {				this.reset( renderer );				this.luminanceRT.texture.type = readBuffer.texture.type;				this.previousLuminanceRT.texture.type = readBuffer.texture.type;				this.currentLuminanceRT.texture.type = readBuffer.texture.type;				this.needsInit = false;			}			if ( this.adaptive ) {				//Render the luminance of the current scene into a render target with mipmapping enabled				this.fsQuad.material = this.materialLuminance;				this.materialLuminance.uniforms.tDiffuse.value = readBuffer.texture;				renderer.setRenderTarget( this.currentLuminanceRT );				this.fsQuad.render( renderer ); //Use the new luminance values, the previous luminance and the frame delta to				//adapt the luminance over time.				this.fsQuad.material = this.materialAdaptiveLum;				this.materialAdaptiveLum.uniforms.delta.value = deltaTime;				this.materialAdaptiveLum.uniforms.lastLum.value = this.previousLuminanceRT.texture;				this.materialAdaptiveLum.uniforms.currentLum.value = this.currentLuminanceRT.texture;				renderer.setRenderTarget( this.luminanceRT );				this.fsQuad.render( renderer ); //Copy the new adapted luminance value so that it can be used by the next frame.				this.fsQuad.material = this.materialCopy;				this.copyUniforms.tDiffuse.value = this.luminanceRT.texture;				renderer.setRenderTarget( this.previousLuminanceRT );				this.fsQuad.render( renderer );			}			this.fsQuad.material = this.materialToneMap;			this.materialToneMap.uniforms.tDiffuse.value = readBuffer.texture;			if ( this.renderToScreen ) {				renderer.setRenderTarget( null );				this.fsQuad.render( renderer );			} else {				renderer.setRenderTarget( writeBuffer );				if ( this.clear ) renderer.clear();				this.fsQuad.render( renderer );			}		}		reset() {			// render targets			if ( this.luminanceRT ) {				this.luminanceRT.dispose();			}			if ( this.currentLuminanceRT ) {				this.currentLuminanceRT.dispose();			}			if ( this.previousLuminanceRT ) {				this.previousLuminanceRT.dispose();			}			const pars = {				minFilter: THREE.LinearFilter,				magFilter: THREE.LinearFilter,				format: THREE.RGBAFormat			}; // was RGB format. changed to RGBA format. see discussion in #8415 / #8450			this.luminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars );			this.luminanceRT.texture.name = 'AdaptiveToneMappingPass.l';			this.luminanceRT.texture.generateMipmaps = false;			this.previousLuminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars );			this.previousLuminanceRT.texture.name = 'AdaptiveToneMappingPass.pl';			this.previousLuminanceRT.texture.generateMipmaps = false; // We only need mipmapping for the current luminosity because we want a down-sampled version to sample in our adaptive shader			pars.minFilter = THREE.LinearMipmapLinearFilter;			pars.generateMipmaps = true;			this.currentLuminanceRT = new THREE.WebGLRenderTarget( this.resolution, this.resolution, pars );			this.currentLuminanceRT.texture.name = 'AdaptiveToneMappingPass.cl';			if ( this.adaptive ) {				this.materialToneMap.defines[ 'ADAPTED_LUMINANCE' ] = '';				this.materialToneMap.uniforms.luminanceMap.value = this.luminanceRT.texture;			} //Put something in the adaptive luminance texture so that the scene can render initially			this.fsQuad.material = new THREE.MeshBasicMaterial( {				color: 0x777777			} );			this.materialLuminance.needsUpdate = true;			this.materialAdaptiveLum.needsUpdate = true;			this.materialToneMap.needsUpdate = true; // renderer.render( this.scene, this.camera, this.luminanceRT );			// renderer.render( this.scene, this.camera, this.previousLuminanceRT );			// renderer.render( this.scene, this.camera, this.currentLuminanceRT );		}		setAdaptive( adaptive ) {			if ( adaptive ) {				this.adaptive = true;				this.materialToneMap.defines[ 'ADAPTED_LUMINANCE' ] = '';				this.materialToneMap.uniforms.luminanceMap.value = this.luminanceRT.texture;			} else {				this.adaptive = false;				delete this.materialToneMap.defines[ 'ADAPTED_LUMINANCE' ];				this.materialToneMap.uniforms.luminanceMap.value = null;			}			this.materialToneMap.needsUpdate = true;		}		setAdaptionRate( rate ) {			if ( rate ) {				this.materialAdaptiveLum.uniforms.tau.value = Math.abs( rate );			}		}		setMinLuminance( minLum ) {			if ( minLum ) {				this.materialToneMap.uniforms.minLuminance.value = minLum;				this.materialAdaptiveLum.uniforms.minLuminance.value = minLum;			}		}		setMaxLuminance( maxLum ) {			if ( maxLum ) {				this.materialToneMap.uniforms.maxLuminance.value = maxLum;			}		}		setAverageLuminance( avgLum ) {			if ( avgLum ) {				this.materialToneMap.uniforms.averageLuminance.value = avgLum;			}		}		setMiddleGrey( middleGrey ) {			if ( middleGrey ) {				this.materialToneMap.uniforms.middleGrey.value = middleGrey;			}		}		dispose() {			if ( this.luminanceRT ) {				this.luminanceRT.dispose();			}			if ( this.previousLuminanceRT ) {				this.previousLuminanceRT.dispose();			}			if ( this.currentLuminanceRT ) {				this.currentLuminanceRT.dispose();			}			if ( this.materialLuminance ) {				this.materialLuminance.dispose();			}			if ( this.materialAdaptiveLum ) {				this.materialAdaptiveLum.dispose();			}			if ( this.materialCopy ) {				this.materialCopy.dispose();			}			if ( this.materialToneMap ) {				this.materialToneMap.dispose();			}		}	}	THREE.AdaptiveToneMappingPass = AdaptiveToneMappingPass;} )();
 |