| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331 | ( function () {	/** * Progressive Light Map Accumulator, by [zalo](https://github.com/zalo/) * * To use, simply construct a `ProgressiveLightMap` object, * `plmap.addObjectsToLightMap(object)` an array of semi-static * objects and lights to the class once, and then call * `plmap.update(camera)` every frame to begin accumulating * lighting samples. * * This should begin accumulating lightmaps which apply to * your objects, so you can start jittering lighting to achieve * the texture-space effect you're looking for. * * @param {WebGLRenderer} renderer A WebGL Rendering Context * @param {number} res The side-long dimension of you total lightmap */	class ProgressiveLightMap {		constructor( renderer, res = 1024 ) {			this.renderer = renderer;			this.res = res;			this.lightMapContainers = [];			this.compiled = false;			this.scene = new THREE.Scene();			this.scene.background = null;			this.tinyTarget = new THREE.WebGLRenderTarget( 1, 1 );			this.buffer1Active = false;			this.firstUpdate = true;			this.warned = false; // Create the Progressive LightMap Texture			const format = /(Android|iPad|iPhone|iPod)/g.test( navigator.userAgent ) ? THREE.HalfFloatType : THREE.FloatType;			this.progressiveLightMap1 = new THREE.WebGLRenderTarget( this.res, this.res, {				type: format			} );			this.progressiveLightMap2 = new THREE.WebGLRenderTarget( this.res, this.res, {				type: format			} ); // Inject some spicy new logic into a standard phong material			this.uvMat = new THREE.MeshPhongMaterial();			this.uvMat.uniforms = {};			this.uvMat.onBeforeCompile = shader => {				// Vertex Shader: Set Vertex Positions to the Unwrapped UV Positions				shader.vertexShader = '#define USE_LIGHTMAP\n' + shader.vertexShader.slice( 0, - 1 ) + '	gl_Position = vec4((uv2 - 0.5) * 2.0, 1.0, 1.0); }'; // Fragment Shader: Set Pixels to average in the Previous frame's Shadows				const bodyStart = shader.fragmentShader.indexOf( 'void main() {' );				shader.fragmentShader = 'varying vec2 vUv2;\n' + shader.fragmentShader.slice( 0, bodyStart ) + '	uniform sampler2D previousShadowMap;\n	uniform float averagingWindow;\n' + shader.fragmentShader.slice( bodyStart - 1, - 1 ) + `\nvec3 texelOld = texture2D(previousShadowMap, vUv2).rgb;				gl_FragColor.rgb = mix(texelOld, gl_FragColor.rgb, 1.0/averagingWindow);			}`; // Set the Previous Frame's Texture Buffer and Averaging Window				shader.uniforms.previousShadowMap = {					value: this.progressiveLightMap1.texture				};				shader.uniforms.averagingWindow = {					value: 100				};				this.uvMat.uniforms = shader.uniforms; // Set the new Shader to this				this.uvMat.userData.shader = shader;				this.compiled = true;			};		}		/**   * Sets these objects' materials' lightmaps and modifies their uv2's.   * @param {Object3D} objects An array of objects and lights to set up your lightmap.   */		addObjectsToLightMap( objects ) {			// Prepare list of UV bounding boxes for packing later...			this.uv_boxes = [];			const padding = 3 / this.res;			for ( let ob = 0; ob < objects.length; ob ++ ) {				const object = objects[ ob ]; // If this object is a light, simply add it to the internal scene				if ( object.isLight ) {					this.scene.attach( object );					continue;				}				if ( ! object.geometry.hasAttribute( 'uv' ) ) {					console.warn( 'All lightmap objects need UVs!' );					continue;				}				if ( this.blurringPlane == null ) {					this._initializeBlurPlane( this.res, this.progressiveLightMap1 );				} // Apply the lightmap to the object				object.material.lightMap = this.progressiveLightMap2.texture;				object.material.dithering = true;				object.castShadow = true;				object.receiveShadow = true;				object.renderOrder = 1000 + ob; // Prepare UV boxes for potpack				// TODO: Size these by object surface area				this.uv_boxes.push( {					w: 1 + padding * 2,					h: 1 + padding * 2,					index: ob				} );				this.lightMapContainers.push( {					basicMat: object.material,					object: object				} );				this.compiled = false;			} // Pack the objects' lightmap UVs into the same global space			const dimensions = potpack( this.uv_boxes );			this.uv_boxes.forEach( box => {				const uv2 = objects[ box.index ].geometry.getAttribute( 'uv' ).clone();				for ( let i = 0; i < uv2.array.length; i += uv2.itemSize ) {					uv2.array[ i ] = ( uv2.array[ i ] + box.x + padding ) / dimensions.w;					uv2.array[ i + 1 ] = ( uv2.array[ i + 1 ] + box.y + padding ) / dimensions.h;				}				objects[ box.index ].geometry.setAttribute( 'uv2', uv2 );				objects[ box.index ].geometry.getAttribute( 'uv2' ).needsUpdate = true;			} );		}		/**   * This function renders each mesh one at a time into their respective surface maps   * @param {Camera} camera Standard Rendering Camera   * @param {number} blendWindow When >1, samples will accumulate over time.   * @param {boolean} blurEdges  Whether to fix UV Edges via blurring   */		update( camera, blendWindow = 100, blurEdges = true ) {			if ( this.blurringPlane == null ) {				return;			} // Store the original Render Target			const oldTarget = this.renderer.getRenderTarget(); // The blurring plane applies blur to the seams of the lightmap			this.blurringPlane.visible = blurEdges; // Steal the Object3D from the real world to our special dimension			for ( let l = 0; l < this.lightMapContainers.length; l ++ ) {				this.lightMapContainers[ l ].object.oldScene = this.lightMapContainers[ l ].object.parent;				this.scene.attach( this.lightMapContainers[ l ].object );			} // Render once normally to initialize everything			if ( this.firstUpdate ) {				this.renderer.setRenderTarget( this.tinyTarget ); // Tiny for Speed				this.renderer.render( this.scene, camera );				this.firstUpdate = false;			} // Set each object's material to the UV Unwrapped Surface Mapping Version			for ( let l = 0; l < this.lightMapContainers.length; l ++ ) {				this.uvMat.uniforms.averagingWindow = {					value: blendWindow				};				this.lightMapContainers[ l ].object.material = this.uvMat;				this.lightMapContainers[ l ].object.oldFrustumCulled = this.lightMapContainers[ l ].object.frustumCulled;				this.lightMapContainers[ l ].object.frustumCulled = false;			} // Ping-pong two surface buffers for reading/writing			const activeMap = this.buffer1Active ? this.progressiveLightMap1 : this.progressiveLightMap2;			const inactiveMap = this.buffer1Active ? this.progressiveLightMap2 : this.progressiveLightMap1; // Render the object's surface maps			this.renderer.setRenderTarget( activeMap );			this.uvMat.uniforms.previousShadowMap = {				value: inactiveMap.texture			};			this.blurringPlane.material.uniforms.previousShadowMap = {				value: inactiveMap.texture			};			this.buffer1Active = ! this.buffer1Active;			this.renderer.render( this.scene, camera ); // Restore the object's Real-time Material and add it back to the original world			for ( let l = 0; l < this.lightMapContainers.length; l ++ ) {				this.lightMapContainers[ l ].object.frustumCulled = this.lightMapContainers[ l ].object.oldFrustumCulled;				this.lightMapContainers[ l ].object.material = this.lightMapContainers[ l ].basicMat;				this.lightMapContainers[ l ].object.oldScene.attach( this.lightMapContainers[ l ].object );			} // Restore the original Render Target			this.renderer.setRenderTarget( oldTarget );		}		/** DEBUG   * Draw the lightmap in the main scene.  Call this after adding the objects to it.   * @param {boolean} visible Whether the debug plane should be visible   * @param {Vector3} position Where the debug plane should be drawn  */		showDebugLightmap( visible, position = undefined ) {			if ( this.lightMapContainers.length == 0 ) {				if ( ! this.warned ) {					console.warn( 'Call this after adding the objects!' );					this.warned = true;				}				return;			}			if ( this.labelMesh == null ) {				this.labelMaterial = new THREE.MeshBasicMaterial( {					map: this.progressiveLightMap1.texture,					side: THREE.DoubleSide				} );				this.labelPlane = new THREE.PlaneGeometry( 100, 100 );				this.labelMesh = new THREE.Mesh( this.labelPlane, this.labelMaterial );				this.labelMesh.position.y = 250;				this.lightMapContainers[ 0 ].object.parent.add( this.labelMesh );			}			if ( position != undefined ) {				this.labelMesh.position.copy( position );			}			this.labelMesh.visible = visible;		}		/**   * INTERNAL Creates the Blurring Plane   * @param {number} res The square resolution of this object's lightMap.   * @param {WebGLRenderTexture} lightMap The lightmap to initialize the plane with.   */		_initializeBlurPlane( res, lightMap = null ) {			const blurMaterial = new THREE.MeshBasicMaterial();			blurMaterial.uniforms = {				previousShadowMap: {					value: null				},				pixelOffset: {					value: 1.0 / res				},				polygonOffset: true,				polygonOffsetFactor: - 1,				polygonOffsetUnits: 3.0			};			blurMaterial.onBeforeCompile = shader => {				// Vertex Shader: Set Vertex Positions to the Unwrapped UV Positions				shader.vertexShader = '#define USE_UV\n' + shader.vertexShader.slice( 0, - 1 ) + '	gl_Position = vec4((uv - 0.5) * 2.0, 1.0, 1.0); }'; // Fragment Shader: Set Pixels to 9-tap box blur the current frame's Shadows				const bodyStart = shader.fragmentShader.indexOf( 'void main() {' );				shader.fragmentShader = '#define USE_UV\n' + shader.fragmentShader.slice( 0, bodyStart ) + '	uniform sampler2D previousShadowMap;\n	uniform float pixelOffset;\n' + shader.fragmentShader.slice( bodyStart - 1, - 1 ) + `	gl_FragColor.rgb = (									texture2D(previousShadowMap, vUv + vec2( pixelOffset,  0.0        )).rgb +									texture2D(previousShadowMap, vUv + vec2( 0.0        ,  pixelOffset)).rgb +									texture2D(previousShadowMap, vUv + vec2( 0.0        , -pixelOffset)).rgb +									texture2D(previousShadowMap, vUv + vec2(-pixelOffset,  0.0        )).rgb +									texture2D(previousShadowMap, vUv + vec2( pixelOffset,  pixelOffset)).rgb +									texture2D(previousShadowMap, vUv + vec2(-pixelOffset,  pixelOffset)).rgb +									texture2D(previousShadowMap, vUv + vec2( pixelOffset, -pixelOffset)).rgb +									texture2D(previousShadowMap, vUv + vec2(-pixelOffset, -pixelOffset)).rgb)/8.0;				}`; // Set the LightMap Accumulation Buffer				shader.uniforms.previousShadowMap = {					value: lightMap.texture				};				shader.uniforms.pixelOffset = {					value: 0.5 / res				};				blurMaterial.uniforms = shader.uniforms; // Set the new Shader to this				blurMaterial.userData.shader = shader;				this.compiled = true;			};			this.blurringPlane = new THREE.Mesh( new THREE.PlaneBufferGeometry( 1, 1 ), blurMaterial );			this.blurringPlane.name = 'Blurring Plane';			this.blurringPlane.frustumCulled = false;			this.blurringPlane.renderOrder = 0;			this.blurringPlane.material.depthWrite = false;			this.scene.add( this.blurringPlane );		}	}	THREE.ProgressiveLightMap = ProgressiveLightMap;} )();
 |