| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358 | ( function () {	/** * GPUComputationRenderer, based on SimulationRenderer by zz85 * * The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats * for each compute element (texel) * * Each variable has a fragment shader that defines the computation made to obtain the variable in question. * You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader * (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency. * * The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used * as inputs to render the textures of the next frame. * * The render targets of the variables can be used as input textures for your visualization shaders. * * Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers. * a common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity... * * The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example: * #DEFINE resolution vec2( 1024.0, 1024.0 ) * * ------------- * * Basic use: * * // Initialization... * * // Create computation renderer * const gpuCompute = new GPUComputationRenderer( 1024, 1024, renderer ); * * // Create initial state float textures * const pos0 = gpuCompute.createTexture(); * const vel0 = gpuCompute.createTexture(); * // and fill in here the texture data... * * // Add texture variables * const velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, pos0 ); * const posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, vel0 ); * * // Add variable dependencies * gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] ); * gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] ); * * // Add custom uniforms * velVar.material.uniforms.time = { value: 0.0 }; * * // Check for completeness * const error = gpuCompute.init(); * if ( error !== null ) { *		console.error( error );  * } * * * // In each frame... * * // Compute! * gpuCompute.compute(); * * // Update texture uniforms in your visualization materials with the gpu renderer output * myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture; * * // Do your rendering * renderer.render( myScene, myCamera ); * * ------------- * * Also, you can use utility functions to create THREE.ShaderMaterial and perform computations (rendering between textures) * Note that the shaders can have multiple input textures. * * const myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { value: null } } ); * const myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { value: null } } ); * * const inputTexture = gpuCompute.createTexture(); * * // Fill in here inputTexture... * * myFilter1.uniforms.theTexture.value = inputTexture; * * const myRenderTarget = gpuCompute.createRenderTarget(); * myFilter2.uniforms.theTexture.value = myRenderTarget.texture; * * const outputRenderTarget = gpuCompute.createRenderTarget(); * * // Now use the output texture where you want: * myMaterial.uniforms.map.value = outputRenderTarget.texture; * * // And compute each frame, before rendering to screen: * gpuCompute.doRenderTarget( myFilter1, myRenderTarget ); * gpuCompute.doRenderTarget( myFilter2, outputRenderTarget ); * * * * @param {int} sizeX Computation problem size is always 2d: sizeX * sizeY elements. * @param {int} sizeY Computation problem size is always 2d: sizeX * sizeY elements. * @param {WebGLRenderer} renderer The renderer  */	class GPUComputationRenderer {		constructor( sizeX, sizeY, renderer ) {			this.variables = [];			this.currentTextureIndex = 0;			let dataType = THREE.FloatType;			const scene = new THREE.Scene();			const camera = new THREE.Camera();			camera.position.z = 1;			const passThruUniforms = {				passThruTexture: {					value: null				}			};			const passThruShader = createShaderMaterial( getPassThroughFragmentShader(), passThruUniforms );			const mesh = new THREE.Mesh( new THREE.PlaneGeometry( 2, 2 ), passThruShader );			scene.add( mesh );			this.setDataType = function ( type ) {				dataType = type;				return this;			};			this.addVariable = function ( variableName, computeFragmentShader, initialValueTexture ) {				const material = this.createShaderMaterial( computeFragmentShader );				const variable = {					name: variableName,					initialValueTexture: initialValueTexture,					material: material,					dependencies: null,					renderTargets: [],					wrapS: null,					wrapT: null,					minFilter: THREE.NearestFilter,					magFilter: THREE.NearestFilter				};				this.variables.push( variable );				return variable;			};			this.setVariableDependencies = function ( variable, dependencies ) {				variable.dependencies = dependencies;			};			this.init = function () {				if ( renderer.capabilities.isWebGL2 === false && renderer.extensions.has( 'OES_texture_float' ) === false ) {					return 'No OES_texture_float support for float textures.';				}				if ( renderer.capabilities.maxVertexTextures === 0 ) {					return 'No support for vertex shader textures.';				}				for ( let i = 0; i < this.variables.length; i ++ ) {					const variable = this.variables[ i ]; // Creates rendertargets and initialize them with input texture					variable.renderTargets[ 0 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );					variable.renderTargets[ 1 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );					this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 0 ] );					this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 1 ] ); // Adds dependencies uniforms to the THREE.ShaderMaterial					const material = variable.material;					const uniforms = material.uniforms;					if ( variable.dependencies !== null ) {						for ( let d = 0; d < variable.dependencies.length; d ++ ) {							const depVar = variable.dependencies[ d ];							if ( depVar.name !== variable.name ) {								// Checks if variable exists								let found = false;								for ( let j = 0; j < this.variables.length; j ++ ) {									if ( depVar.name === this.variables[ j ].name ) {										found = true;										break;									}								}								if ( ! found ) {									return 'Variable dependency not found. Variable=' + variable.name + ', dependency=' + depVar.name;								}							}							uniforms[ depVar.name ] = {								value: null							};							material.fragmentShader = '\nuniform sampler2D ' + depVar.name + ';\n' + material.fragmentShader;						}					}				}				this.currentTextureIndex = 0;				return null;			};			this.compute = function () {				const currentTextureIndex = this.currentTextureIndex;				const nextTextureIndex = this.currentTextureIndex === 0 ? 1 : 0;				for ( let i = 0, il = this.variables.length; i < il; i ++ ) {					const variable = this.variables[ i ]; // Sets texture dependencies uniforms					if ( variable.dependencies !== null ) {						const uniforms = variable.material.uniforms;						for ( let d = 0, dl = variable.dependencies.length; d < dl; d ++ ) {							const depVar = variable.dependencies[ d ];							uniforms[ depVar.name ].value = depVar.renderTargets[ currentTextureIndex ].texture;						}					} // Performs the computation for this variable					this.doRenderTarget( variable.material, variable.renderTargets[ nextTextureIndex ] );				}				this.currentTextureIndex = nextTextureIndex;			};			this.getCurrentRenderTarget = function ( variable ) {				return variable.renderTargets[ this.currentTextureIndex ];			};			this.getAlternateRenderTarget = function ( variable ) {				return variable.renderTargets[ this.currentTextureIndex === 0 ? 1 : 0 ];			};			function addResolutionDefine( materialShader ) {				materialShader.defines.resolution = 'vec2( ' + sizeX.toFixed( 1 ) + ', ' + sizeY.toFixed( 1 ) + ' )';			}			this.addResolutionDefine = addResolutionDefine; // The following functions can be used to compute things manually			function createShaderMaterial( computeFragmentShader, uniforms ) {				uniforms = uniforms || {};				const material = new THREE.ShaderMaterial( {					uniforms: uniforms,					vertexShader: getPassThroughVertexShader(),					fragmentShader: computeFragmentShader				} );				addResolutionDefine( material );				return material;			}			this.createShaderMaterial = createShaderMaterial;			this.createRenderTarget = function ( sizeXTexture, sizeYTexture, wrapS, wrapT, minFilter, magFilter ) {				sizeXTexture = sizeXTexture || sizeX;				sizeYTexture = sizeYTexture || sizeY;				wrapS = wrapS || THREE.ClampToEdgeWrapping;				wrapT = wrapT || THREE.ClampToEdgeWrapping;				minFilter = minFilter || THREE.NearestFilter;				magFilter = magFilter || THREE.NearestFilter;				const renderTarget = new THREE.WebGLRenderTarget( sizeXTexture, sizeYTexture, {					wrapS: wrapS,					wrapT: wrapT,					minFilter: minFilter,					magFilter: magFilter,					format: THREE.RGBAFormat,					type: dataType,					depthBuffer: false				} );				return renderTarget;			};			this.createTexture = function () {				const data = new Float32Array( sizeX * sizeY * 4 );				return new THREE.DataTexture( data, sizeX, sizeY, THREE.RGBAFormat, THREE.FloatType );			};			this.renderTexture = function ( input, output ) {				// Takes a texture, and render out in rendertarget				// input = Texture				// output = RenderTarget				passThruUniforms.passThruTexture.value = input;				this.doRenderTarget( passThruShader, output );				passThruUniforms.passThruTexture.value = null;			};			this.doRenderTarget = function ( material, output ) {				const currentRenderTarget = renderer.getRenderTarget();				mesh.material = material;				renderer.setRenderTarget( output );				renderer.render( scene, camera );				mesh.material = passThruShader;				renderer.setRenderTarget( currentRenderTarget );			}; // Shaders			function getPassThroughVertexShader() {				return 'void main()	{\n' + '\n' + '	gl_Position = vec4( position, 1.0 );\n' + '\n' + '}\n';			}			function getPassThroughFragmentShader() {				return 'uniform sampler2D passThruTexture;\n' + '\n' + 'void main() {\n' + '\n' + '	vec2 uv = gl_FragCoord.xy / resolution.xy;\n' + '\n' + '	gl_FragColor = texture2D( passThruTexture, uv );\n' + '\n' + '}\n';			}		}	}	THREE.GPUComputationRenderer = GPUComputationRenderer;} )();
 |