| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485 | ( function () {	/** * @fileoverview This class can be used to subdivide a convex Geometry object into pieces. * * Usage: * * Use the function prepareBreakableObject to prepare a THREE.Mesh object to be broken. * * Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane) * * Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them. * * Requisites for the object: * *  - THREE.Mesh object must have a BufferGeometry (not Geometry) and a Material * *  - Vertex normals must be planar (not smoothed) * *  - The geometry must be convex (this is not checked in the library). You can create convex *  geometries with THREE.ConvexGeometry. The BoxGeometry, SphereGeometry and other convex primitives *  can also be used. * * Note: This lib adds member variables to object's userData member (see prepareBreakableObject function) * Use with caution and read the code when using with other libs. * * @param {double} minSizeForBreak Min size a debris can have to break. * @param {double} smallDelta Max distance to consider that a point belongs to a plane. **/	const _v1 = new THREE.Vector3();	class ConvexObjectBreaker {		constructor( minSizeForBreak = 1.4, smallDelta = 0.0001 ) {			this.minSizeForBreak = minSizeForBreak;			this.smallDelta = smallDelta;			this.tempLine1 = new THREE.Line3();			this.tempPlane1 = new THREE.Plane();			this.tempPlane2 = new THREE.Plane();			this.tempPlane_Cut = new THREE.Plane();			this.tempCM1 = new THREE.Vector3();			this.tempCM2 = new THREE.Vector3();			this.tempVector3 = new THREE.Vector3();			this.tempVector3_2 = new THREE.Vector3();			this.tempVector3_3 = new THREE.Vector3();			this.tempVector3_P0 = new THREE.Vector3();			this.tempVector3_P1 = new THREE.Vector3();			this.tempVector3_P2 = new THREE.Vector3();			this.tempVector3_N0 = new THREE.Vector3();			this.tempVector3_N1 = new THREE.Vector3();			this.tempVector3_AB = new THREE.Vector3();			this.tempVector3_CB = new THREE.Vector3();			this.tempResultObjects = {				object1: null,				object2: null			};			this.segments = [];			const n = 30 * 30;			for ( let i = 0; i < n; i ++ ) this.segments[ i ] = false;		}		prepareBreakableObject( object, mass, velocity, angularVelocity, breakable ) {			// object is a Object3d (normally a THREE.Mesh), must have a BufferGeometry, and it must be convex.			// Its material property is propagated to its children (sub-pieces)			// mass must be > 0			if ( ! object.geometry.isBufferGeometry ) {				console.error( 'THREE.ConvexObjectBreaker.prepareBreakableObject(): Parameter object must have a BufferGeometry.' );			}			const userData = object.userData;			userData.mass = mass;			userData.velocity = velocity.clone();			userData.angularVelocity = angularVelocity.clone();			userData.breakable = breakable;		}		/*   * @param {int} maxRadialIterations Iterations for radial cuts.   * @param {int} maxRandomIterations Max random iterations for not-radial cuts   *   * Returns the array of pieces   */		subdivideByImpact( object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations ) {			const debris = [];			const tempPlane1 = this.tempPlane1;			const tempPlane2 = this.tempPlane2;			this.tempVector3.addVectors( pointOfImpact, normal );			tempPlane1.setFromCoplanarPoints( pointOfImpact, object.position, this.tempVector3 );			const maxTotalIterations = maxRandomIterations + maxRadialIterations;			const scope = this;			function subdivideRadial( subObject, startAngle, endAngle, numIterations ) {				if ( Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations ) {					debris.push( subObject );					return;				}				let angle = Math.PI;				if ( numIterations === 0 ) {					tempPlane2.normal.copy( tempPlane1.normal );					tempPlane2.constant = tempPlane1.constant;				} else {					if ( numIterations <= maxRadialIterations ) {						angle = ( endAngle - startAngle ) * ( 0.2 + 0.6 * Math.random() ) + startAngle; // Rotate tempPlane2 at impact point around normal axis and the angle						scope.tempVector3_2.copy( object.position ).sub( pointOfImpact ).applyAxisAngle( normal, angle ).add( pointOfImpact );						tempPlane2.setFromCoplanarPoints( pointOfImpact, scope.tempVector3, scope.tempVector3_2 );					} else {						angle = ( 0.5 * ( numIterations & 1 ) + 0.2 * ( 2 - Math.random() ) ) * Math.PI; // Rotate tempPlane2 at object position around normal axis and the angle						scope.tempVector3_2.copy( pointOfImpact ).sub( subObject.position ).applyAxisAngle( normal, angle ).add( subObject.position );						scope.tempVector3_3.copy( normal ).add( subObject.position );						tempPlane2.setFromCoplanarPoints( subObject.position, scope.tempVector3_3, scope.tempVector3_2 );					}				} // Perform the cut				scope.cutByPlane( subObject, tempPlane2, scope.tempResultObjects );				const obj1 = scope.tempResultObjects.object1;				const obj2 = scope.tempResultObjects.object2;				if ( obj1 ) {					subdivideRadial( obj1, startAngle, angle, numIterations + 1 );				}				if ( obj2 ) {					subdivideRadial( obj2, angle, endAngle, numIterations + 1 );				}			}			subdivideRadial( object, 0, 2 * Math.PI, 0 );			return debris;		}		cutByPlane( object, plane, output ) {			// Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut.			// object2 can be null if the plane doesn't cut the object.			// object1 can be null only in case of internal error			// Returned value is number of pieces, 0 for error.			const geometry = object.geometry;			const coords = geometry.attributes.position.array;			const normals = geometry.attributes.normal.array;			const numPoints = coords.length / 3;			let numFaces = numPoints / 3;			let indices = geometry.getIndex();			if ( indices ) {				indices = indices.array;				numFaces = indices.length / 3;			}			function getVertexIndex( faceIdx, vert ) {				// vert = 0, 1 or 2.				const idx = faceIdx * 3 + vert;				return indices ? indices[ idx ] : idx;			}			const points1 = [];			const points2 = [];			const delta = this.smallDelta; // Reset segments mark			const numPointPairs = numPoints * numPoints;			for ( let i = 0; i < numPointPairs; i ++ ) this.segments[ i ] = false;			const p0 = this.tempVector3_P0;			const p1 = this.tempVector3_P1;			const n0 = this.tempVector3_N0;			const n1 = this.tempVector3_N1; // Iterate through the faces to mark edges shared by coplanar faces			for ( let i = 0; i < numFaces - 1; i ++ ) {				const a1 = getVertexIndex( i, 0 );				const b1 = getVertexIndex( i, 1 );				const c1 = getVertexIndex( i, 2 ); // Assuming all 3 vertices have the same normal				n0.set( normals[ a1 ], normals[ a1 ] + 1, normals[ a1 ] + 2 );				for ( let j = i + 1; j < numFaces; j ++ ) {					const a2 = getVertexIndex( j, 0 );					const b2 = getVertexIndex( j, 1 );					const c2 = getVertexIndex( j, 2 ); // Assuming all 3 vertices have the same normal					n1.set( normals[ a2 ], normals[ a2 ] + 1, normals[ a2 ] + 2 );					const coplanar = 1 - n0.dot( n1 ) < delta;					if ( coplanar ) {						if ( a1 === a2 || a1 === b2 || a1 === c2 ) {							if ( b1 === a2 || b1 === b2 || b1 === c2 ) {								this.segments[ a1 * numPoints + b1 ] = true;								this.segments[ b1 * numPoints + a1 ] = true;							} else {								this.segments[ c1 * numPoints + a1 ] = true;								this.segments[ a1 * numPoints + c1 ] = true;							}						} else if ( b1 === a2 || b1 === b2 || b1 === c2 ) {							this.segments[ c1 * numPoints + b1 ] = true;							this.segments[ b1 * numPoints + c1 ] = true;						}					}				}			} // Transform the plane to object local space			const localPlane = this.tempPlane_Cut;			object.updateMatrix();			ConvexObjectBreaker.transformPlaneToLocalSpace( plane, object.matrix, localPlane ); // Iterate through the faces adding points to both pieces			for ( let i = 0; i < numFaces; i ++ ) {				const va = getVertexIndex( i, 0 );				const vb = getVertexIndex( i, 1 );				const vc = getVertexIndex( i, 2 );				for ( let segment = 0; segment < 3; segment ++ ) {					const i0 = segment === 0 ? va : segment === 1 ? vb : vc;					const i1 = segment === 0 ? vb : segment === 1 ? vc : va;					const segmentState = this.segments[ i0 * numPoints + i1 ];					if ( segmentState ) continue; // The segment already has been processed in another face					// Mark segment as processed (also inverted segment)					this.segments[ i0 * numPoints + i1 ] = true;					this.segments[ i1 * numPoints + i0 ] = true;					p0.set( coords[ 3 * i0 ], coords[ 3 * i0 + 1 ], coords[ 3 * i0 + 2 ] );					p1.set( coords[ 3 * i1 ], coords[ 3 * i1 + 1 ], coords[ 3 * i1 + 2 ] ); // mark: 1 for negative side, 2 for positive side, 3 for coplanar point					let mark0 = 0;					let d = localPlane.distanceToPoint( p0 );					if ( d > delta ) {						mark0 = 2;						points2.push( p0.clone() );					} else if ( d < - delta ) {						mark0 = 1;						points1.push( p0.clone() );					} else {						mark0 = 3;						points1.push( p0.clone() );						points2.push( p0.clone() );					} // mark: 1 for negative side, 2 for positive side, 3 for coplanar point					let mark1 = 0;					d = localPlane.distanceToPoint( p1 );					if ( d > delta ) {						mark1 = 2;						points2.push( p1.clone() );					} else if ( d < - delta ) {						mark1 = 1;						points1.push( p1.clone() );					} else {						mark1 = 3;						points1.push( p1.clone() );						points2.push( p1.clone() );					}					if ( mark0 === 1 && mark1 === 2 || mark0 === 2 && mark1 === 1 ) {						// Intersection of segment with the plane						this.tempLine1.start.copy( p0 );						this.tempLine1.end.copy( p1 );						let intersection = new THREE.Vector3();						intersection = localPlane.intersectLine( this.tempLine1, intersection );						if ( intersection === null ) {							// Shouldn't happen							console.error( 'Internal error: segment does not intersect plane.' );							output.segmentedObject1 = null;							output.segmentedObject2 = null;							return 0;						}						points1.push( intersection );						points2.push( intersection.clone() );					}				}			} // Calculate debris mass (very fast and imprecise):			const newMass = object.userData.mass * 0.5; // Calculate debris Center of Mass (again fast and imprecise)			this.tempCM1.set( 0, 0, 0 );			let radius1 = 0;			const numPoints1 = points1.length;			if ( numPoints1 > 0 ) {				for ( let i = 0; i < numPoints1; i ++ ) this.tempCM1.add( points1[ i ] );				this.tempCM1.divideScalar( numPoints1 );				for ( let i = 0; i < numPoints1; i ++ ) {					const p = points1[ i ];					p.sub( this.tempCM1 );					radius1 = Math.max( radius1, p.x, p.y, p.z );				}				this.tempCM1.add( object.position );			}			this.tempCM2.set( 0, 0, 0 );			let radius2 = 0;			const numPoints2 = points2.length;			if ( numPoints2 > 0 ) {				for ( let i = 0; i < numPoints2; i ++ ) this.tempCM2.add( points2[ i ] );				this.tempCM2.divideScalar( numPoints2 );				for ( let i = 0; i < numPoints2; i ++ ) {					const p = points2[ i ];					p.sub( this.tempCM2 );					radius2 = Math.max( radius2, p.x, p.y, p.z );				}				this.tempCM2.add( object.position );			}			let object1 = null;			let object2 = null;			let numObjects = 0;			if ( numPoints1 > 4 ) {				object1 = new THREE.Mesh( new THREE.ConvexGeometry( points1 ), object.material );				object1.position.copy( this.tempCM1 );				object1.quaternion.copy( object.quaternion );				this.prepareBreakableObject( object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak );				numObjects ++;			}			if ( numPoints2 > 4 ) {				object2 = new THREE.Mesh( new THREE.ConvexGeometry( points2 ), object.material );				object2.position.copy( this.tempCM2 );				object2.quaternion.copy( object.quaternion );				this.prepareBreakableObject( object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak );				numObjects ++;			}			output.object1 = object1;			output.object2 = object2;			return numObjects;		}		static transformFreeVector( v, m ) {			// input:			// vector interpreted as a free vector			// THREE.Matrix4 orthogonal matrix (matrix without scale)			const x = v.x,				y = v.y,				z = v.z;			const e = m.elements;			v.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;			v.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;			v.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;			return v;		}		static transformFreeVectorInverse( v, m ) {			// input:			// vector interpreted as a free vector			// THREE.Matrix4 orthogonal matrix (matrix without scale)			const x = v.x,				y = v.y,				z = v.z;			const e = m.elements;			v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z;			v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z;			v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z;			return v;		}		static transformTiedVectorInverse( v, m ) {			// input:			// vector interpreted as a tied (ordinary) vector			// THREE.Matrix4 orthogonal matrix (matrix without scale)			const x = v.x,				y = v.y,				z = v.z;			const e = m.elements;			v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z - e[ 12 ];			v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z - e[ 13 ];			v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z - e[ 14 ];			return v;		}		static transformPlaneToLocalSpace( plane, m, resultPlane ) {			resultPlane.normal.copy( plane.normal );			resultPlane.constant = plane.constant;			const referencePoint = ConvexObjectBreaker.transformTiedVectorInverse( plane.coplanarPoint( _v1 ), m );			ConvexObjectBreaker.transformFreeVectorInverse( resultPlane.normal, m ); // recalculate constant (like in setFromNormalAndCoplanarPoint)			resultPlane.constant = - referencePoint.dot( resultPlane.normal );		}	}	THREE.ConvexObjectBreaker = ConvexObjectBreaker;} )();
 |