| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639 | /** * Octahedron and Quantization encodings based on work by: * * @link https://github.com/tsherif/mesh-quantization-example * */import {	BufferAttribute,	Matrix3,	Matrix4,	Vector3} from '../../../build/three.module.js';import { PackedPhongMaterial } from './PackedPhongMaterial.js';/** * Make the input mesh.geometry's normal attribute encoded and compressed by 3 different methods. * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the normal data. * * @param {THREE.Mesh} mesh * @param {String} encodeMethod		"DEFAULT" || "OCT1Byte" || "OCT2Byte" || "ANGLES" * */function compressNormals( mesh, encodeMethod ) {	if ( ! mesh.geometry ) {		console.error( 'Mesh must contain geometry. ' );	}	const normal = mesh.geometry.attributes.normal;	if ( ! normal ) {		console.error( 'Geometry must contain normal attribute. ' );	}	if ( normal.isPacked ) return;	if ( normal.itemSize != 3 ) {		console.error( 'normal.itemSize is not 3, which cannot be encoded. ' );	}	const array = normal.array;	const count = normal.count;	let result;	if ( encodeMethod == 'DEFAULT' ) {		// TODO: Add 1 byte to the result, making the encoded length to be 4 bytes.		result = new Uint8Array( count * 3 );		for ( let idx = 0; idx < array.length; idx += 3 ) {			const encoded = defaultEncode( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 1 );			result[ idx + 0 ] = encoded[ 0 ];			result[ idx + 1 ] = encoded[ 1 ];			result[ idx + 2 ] = encoded[ 2 ];		}		mesh.geometry.setAttribute( 'normal', new BufferAttribute( result, 3, true ) );		mesh.geometry.attributes.normal.bytes = result.length * 1;	} else if ( encodeMethod == 'OCT1Byte' ) {		/**		* It is not recommended to use 1-byte octahedron normals encoding unless you want to extremely reduce the memory usage		* As it makes vertex data not aligned to a 4 byte boundary which may harm some WebGL implementations and sometimes the normal distortion is visible		* Please refer to @zeux 's comments in https://github.com/mrdoob/three.js/pull/18208		*/		result = new Int8Array( count * 2 );		for ( let idx = 0; idx < array.length; idx += 3 ) {			const encoded = octEncodeBest( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 1 );			result[ idx / 3 * 2 + 0 ] = encoded[ 0 ];			result[ idx / 3 * 2 + 1 ] = encoded[ 1 ];		}		mesh.geometry.setAttribute( 'normal', new BufferAttribute( result, 2, true ) );		mesh.geometry.attributes.normal.bytes = result.length * 1;	} else if ( encodeMethod == 'OCT2Byte' ) {		result = new Int16Array( count * 2 );		for ( let idx = 0; idx < array.length; idx += 3 ) {			const encoded = octEncodeBest( array[ idx ], array[ idx + 1 ], array[ idx + 2 ], 2 );			result[ idx / 3 * 2 + 0 ] = encoded[ 0 ];			result[ idx / 3 * 2 + 1 ] = encoded[ 1 ];		}		mesh.geometry.setAttribute( 'normal', new BufferAttribute( result, 2, true ) );		mesh.geometry.attributes.normal.bytes = result.length * 2;	} else if ( encodeMethod == 'ANGLES' ) {		result = new Uint16Array( count * 2 );		for ( let idx = 0; idx < array.length; idx += 3 ) {			const encoded = anglesEncode( array[ idx ], array[ idx + 1 ], array[ idx + 2 ] );			result[ idx / 3 * 2 + 0 ] = encoded[ 0 ];			result[ idx / 3 * 2 + 1 ] = encoded[ 1 ];		}		mesh.geometry.setAttribute( 'normal', new BufferAttribute( result, 2, true ) );		mesh.geometry.attributes.normal.bytes = result.length * 2;	} else {		console.error( 'Unrecognized encoding method, should be `DEFAULT` or `ANGLES` or `OCT`. ' );	}	mesh.geometry.attributes.normal.needsUpdate = true;	mesh.geometry.attributes.normal.isPacked = true;	mesh.geometry.attributes.normal.packingMethod = encodeMethod;	// modify material	if ( ! ( mesh.material instanceof PackedPhongMaterial ) ) {		mesh.material = new PackedPhongMaterial().copy( mesh.material );	}	if ( encodeMethod == 'ANGLES' ) {		mesh.material.defines.USE_PACKED_NORMAL = 0;	}	if ( encodeMethod == 'OCT1Byte' ) {		mesh.material.defines.USE_PACKED_NORMAL = 1;	}	if ( encodeMethod == 'OCT2Byte' ) {		mesh.material.defines.USE_PACKED_NORMAL = 1;	}	if ( encodeMethod == 'DEFAULT' ) {		mesh.material.defines.USE_PACKED_NORMAL = 2;	}}/**	 * Make the input mesh.geometry's position attribute encoded and compressed.	 * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the position data.	 *	 * @param {THREE.Mesh} mesh	 *	 */function compressPositions( mesh ) {	if ( ! mesh.geometry ) {		console.error( 'Mesh must contain geometry. ' );	}	const position = mesh.geometry.attributes.position;	if ( ! position ) {		console.error( 'Geometry must contain position attribute. ' );	}	if ( position.isPacked ) return;	if ( position.itemSize != 3 ) {		console.error( 'position.itemSize is not 3, which cannot be packed. ' );	}	const array = position.array;	const encodingBytes = 2;	const result = quantizedEncode( array, encodingBytes );	const quantized = result.quantized;	const decodeMat = result.decodeMat;	// IMPORTANT: calculate original geometry bounding info first, before updating packed positions	if ( mesh.geometry.boundingBox == null ) mesh.geometry.computeBoundingBox();	if ( mesh.geometry.boundingSphere == null ) mesh.geometry.computeBoundingSphere();	mesh.geometry.setAttribute( 'position', new BufferAttribute( quantized, 3 ) );	mesh.geometry.attributes.position.isPacked = true;	mesh.geometry.attributes.position.needsUpdate = true;	mesh.geometry.attributes.position.bytes = quantized.length * encodingBytes;	// modify material	if ( ! ( mesh.material instanceof PackedPhongMaterial ) ) {		mesh.material = new PackedPhongMaterial().copy( mesh.material );	}	mesh.material.defines.USE_PACKED_POSITION = 0;	mesh.material.uniforms.quantizeMatPos.value = decodeMat;	mesh.material.uniforms.quantizeMatPos.needsUpdate = true;}/** * Make the input mesh.geometry's uv attribute encoded and compressed. * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the uv data. * * @param {THREE.Mesh} mesh * */function compressUvs( mesh ) {	if ( ! mesh.geometry ) {		console.error( 'Mesh must contain geometry property. ' );	}	const uvs = mesh.geometry.attributes.uv;	if ( ! uvs ) {		console.error( 'Geometry must contain uv attribute. ' );	}	if ( uvs.isPacked ) return;	const range = { min: Infinity, max: - Infinity };	const array = uvs.array;	for ( let i = 0; i < array.length; i ++ ) {		range.min = Math.min( range.min, array[ i ] );		range.max = Math.max( range.max, array[ i ] );	}	let result;	if ( range.min >= - 1.0 && range.max <= 1.0 ) {		// use default encoding method		result = new Uint16Array( array.length );		for ( let i = 0; i < array.length; i += 2 ) {			const encoded = defaultEncode( array[ i ], array[ i + 1 ], 0, 2 );			result[ i ] = encoded[ 0 ];			result[ i + 1 ] = encoded[ 1 ];		}		mesh.geometry.setAttribute( 'uv', new BufferAttribute( result, 2, true ) );		mesh.geometry.attributes.uv.isPacked = true;		mesh.geometry.attributes.uv.needsUpdate = true;		mesh.geometry.attributes.uv.bytes = result.length * 2;		if ( ! ( mesh.material instanceof PackedPhongMaterial ) ) {			mesh.material = new PackedPhongMaterial().copy( mesh.material );		}		mesh.material.defines.USE_PACKED_UV = 0;	} else {		// use quantized encoding method		result = quantizedEncodeUV( array, 2 );		mesh.geometry.setAttribute( 'uv', new BufferAttribute( result.quantized, 2 ) );		mesh.geometry.attributes.uv.isPacked = true;		mesh.geometry.attributes.uv.needsUpdate = true;		mesh.geometry.attributes.uv.bytes = result.quantized.length * 2;		if ( ! ( mesh.material instanceof PackedPhongMaterial ) ) {			mesh.material = new PackedPhongMaterial().copy( mesh.material );		}		mesh.material.defines.USE_PACKED_UV = 1;		mesh.material.uniforms.quantizeMatUV.value = result.decodeMat;		mesh.material.uniforms.quantizeMatUV.needsUpdate = true;	}}// Encoding functionsfunction defaultEncode( x, y, z, bytes ) {	if ( bytes == 1 ) {		const tmpx = Math.round( ( x + 1 ) * 0.5 * 255 );		const tmpy = Math.round( ( y + 1 ) * 0.5 * 255 );		const tmpz = Math.round( ( z + 1 ) * 0.5 * 255 );		return new Uint8Array( [ tmpx, tmpy, tmpz ] );	} else if ( bytes == 2 ) {		const tmpx = Math.round( ( x + 1 ) * 0.5 * 65535 );		const tmpy = Math.round( ( y + 1 ) * 0.5 * 65535 );		const tmpz = Math.round( ( z + 1 ) * 0.5 * 65535 );		return new Uint16Array( [ tmpx, tmpy, tmpz ] );	} else {		console.error( 'number of bytes must be 1 or 2' );	}}// for `Angles` encodingfunction anglesEncode( x, y, z ) {	const normal0 = parseInt( 0.5 * ( 1.0 + Math.atan2( y, x ) / Math.PI ) * 65535 );	const normal1 = parseInt( 0.5 * ( 1.0 + z ) * 65535 );	return new Uint16Array( [ normal0, normal1 ] );}// for `Octahedron` encodingfunction octEncodeBest( x, y, z, bytes ) {	let oct, dec, best, currentCos, bestCos;	// Test various combinations of ceil and floor	// to minimize rounding errors	best = oct = octEncodeVec3( x, y, z, 'floor', 'floor' );	dec = octDecodeVec2( oct );	bestCos = dot( x, y, z, dec );	oct = octEncodeVec3( x, y, z, 'ceil', 'floor' );	dec = octDecodeVec2( oct );	currentCos = dot( x, y, z, dec );	if ( currentCos > bestCos ) {		best = oct;		bestCos = currentCos;	}	oct = octEncodeVec3( x, y, z, 'floor', 'ceil' );	dec = octDecodeVec2( oct );	currentCos = dot( x, y, z, dec );	if ( currentCos > bestCos ) {		best = oct;		bestCos = currentCos;	}	oct = octEncodeVec3( x, y, z, 'ceil', 'ceil' );	dec = octDecodeVec2( oct );	currentCos = dot( x, y, z, dec );	if ( currentCos > bestCos ) {		best = oct;	}	return best;	function octEncodeVec3( x0, y0, z0, xfunc, yfunc ) {		let x = x0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) );		let y = y0 / ( Math.abs( x0 ) + Math.abs( y0 ) + Math.abs( z0 ) );		if ( z < 0 ) {			const tempx = ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 );			const tempy = ( 1 - Math.abs( x ) ) * ( y >= 0 ? 1 : - 1 );			x = tempx;			y = tempy;			let diff = 1 - Math.abs( x ) - Math.abs( y );			if ( diff > 0 ) {				diff += 0.001;				x += x > 0 ? diff / 2 : - diff / 2;				y += y > 0 ? diff / 2 : - diff / 2;			}		}		if ( bytes == 1 ) {			return new Int8Array( [				Math[ xfunc ]( x * 127.5 + ( x < 0 ? 1 : 0 ) ),				Math[ yfunc ]( y * 127.5 + ( y < 0 ? 1 : 0 ) )			] );		}		if ( bytes == 2 ) {			return new Int16Array( [				Math[ xfunc ]( x * 32767.5 + ( x < 0 ? 1 : 0 ) ),				Math[ yfunc ]( y * 32767.5 + ( y < 0 ? 1 : 0 ) )			] );		}	}	function octDecodeVec2( oct ) {		let x = oct[ 0 ];		let y = oct[ 1 ];		if ( bytes == 1 ) {			x /= x < 0 ? 127 : 128;			y /= y < 0 ? 127 : 128;		} else if ( bytes == 2 ) {			x /= x < 0 ? 32767 : 32768;			y /= y < 0 ? 32767 : 32768;		}		const z = 1 - Math.abs( x ) - Math.abs( y );		if ( z < 0 ) {			const tmpx = x;			x = ( 1 - Math.abs( y ) ) * ( x >= 0 ? 1 : - 1 );			y = ( 1 - Math.abs( tmpx ) ) * ( y >= 0 ? 1 : - 1 );		}		const length = Math.sqrt( x * x + y * y + z * z );		return [			x / length,			y / length,			z / length		];	}	function dot( x, y, z, vec3 ) {		return x * vec3[ 0 ] + y * vec3[ 1 ] + z * vec3[ 2 ];	}}function quantizedEncode( array, bytes ) {	let quantized, segments;	if ( bytes == 1 ) {		quantized = new Uint8Array( array.length );		segments = 255;	} else if ( bytes == 2 ) {		quantized = new Uint16Array( array.length );		segments = 65535;	} else {		console.error( 'number of bytes error! ' );	}	const decodeMat = new Matrix4();	const min = new Float32Array( 3 );	const max = new Float32Array( 3 );	min[ 0 ] = min[ 1 ] = min[ 2 ] = Number.MAX_VALUE;	max[ 0 ] = max[ 1 ] = max[ 2 ] = - Number.MAX_VALUE;	for ( let i = 0; i < array.length; i += 3 ) {		min[ 0 ] = Math.min( min[ 0 ], array[ i + 0 ] );		min[ 1 ] = Math.min( min[ 1 ], array[ i + 1 ] );		min[ 2 ] = Math.min( min[ 2 ], array[ i + 2 ] );		max[ 0 ] = Math.max( max[ 0 ], array[ i + 0 ] );		max[ 1 ] = Math.max( max[ 1 ], array[ i + 1 ] );		max[ 2 ] = Math.max( max[ 2 ], array[ i + 2 ] );	}	decodeMat.scale( new Vector3(		( max[ 0 ] - min[ 0 ] ) / segments,		( max[ 1 ] - min[ 1 ] ) / segments,		( max[ 2 ] - min[ 2 ] ) / segments	) );	decodeMat.elements[ 12 ] = min[ 0 ];	decodeMat.elements[ 13 ] = min[ 1 ];	decodeMat.elements[ 14 ] = min[ 2 ];	decodeMat.transpose();	const multiplier = new Float32Array( [		max[ 0 ] !== min[ 0 ] ? segments / ( max[ 0 ] - min[ 0 ] ) : 0,		max[ 1 ] !== min[ 1 ] ? segments / ( max[ 1 ] - min[ 1 ] ) : 0,		max[ 2 ] !== min[ 2 ] ? segments / ( max[ 2 ] - min[ 2 ] ) : 0	] );	for ( let i = 0; i < array.length; i += 3 ) {		quantized[ i + 0 ] = Math.floor( ( array[ i + 0 ] - min[ 0 ] ) * multiplier[ 0 ] );		quantized[ i + 1 ] = Math.floor( ( array[ i + 1 ] - min[ 1 ] ) * multiplier[ 1 ] );		quantized[ i + 2 ] = Math.floor( ( array[ i + 2 ] - min[ 2 ] ) * multiplier[ 2 ] );	}	return {		quantized: quantized,		decodeMat: decodeMat	};}function quantizedEncodeUV( array, bytes ) {	let quantized, segments;	if ( bytes == 1 ) {		quantized = new Uint8Array( array.length );		segments = 255;	} else if ( bytes == 2 ) {		quantized = new Uint16Array( array.length );		segments = 65535;	} else {		console.error( 'number of bytes error! ' );	}	const decodeMat = new Matrix3();	const min = new Float32Array( 2 );	const max = new Float32Array( 2 );	min[ 0 ] = min[ 1 ] = Number.MAX_VALUE;	max[ 0 ] = max[ 1 ] = - Number.MAX_VALUE;	for ( let i = 0; i < array.length; i += 2 ) {		min[ 0 ] = Math.min( min[ 0 ], array[ i + 0 ] );		min[ 1 ] = Math.min( min[ 1 ], array[ i + 1 ] );		max[ 0 ] = Math.max( max[ 0 ], array[ i + 0 ] );		max[ 1 ] = Math.max( max[ 1 ], array[ i + 1 ] );	}	decodeMat.scale(		( max[ 0 ] - min[ 0 ] ) / segments,		( max[ 1 ] - min[ 1 ] ) / segments	);	decodeMat.elements[ 6 ] = min[ 0 ];	decodeMat.elements[ 7 ] = min[ 1 ];	decodeMat.transpose();	const multiplier = new Float32Array( [		max[ 0 ] !== min[ 0 ] ? segments / ( max[ 0 ] - min[ 0 ] ) : 0,		max[ 1 ] !== min[ 1 ] ? segments / ( max[ 1 ] - min[ 1 ] ) : 0	] );	for ( let i = 0; i < array.length; i += 2 ) {		quantized[ i + 0 ] = Math.floor( ( array[ i + 0 ] - min[ 0 ] ) * multiplier[ 0 ] );		quantized[ i + 1 ] = Math.floor( ( array[ i + 1 ] - min[ 1 ] ) * multiplier[ 1 ] );	}	return {		quantized: quantized,		decodeMat: decodeMat	};}export {	compressNormals,	compressPositions,	compressUvs,};
 |