| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 | import { ShaderNode,	add, addTo, sub, mul, div, saturate, dot, pow, pow2, exp2, normalize, max, sqrt, negate,	cond, greaterThan, and,	transformedNormalView, positionViewDirection,	diffuseColor, specularColor, roughness,	PI, RECIPROCAL_PI, EPSILON} from '../ShaderNode.js';export const F_Schlick = new ShaderNode( ( inputs ) => {	const { f0, f90, dotVH } = inputs;	// Original approximation by Christophe Schlick '94	// float fresnel = pow( 1.0 - dotVH, 5.0 );	// Optimized variant (presented by Epic at SIGGRAPH '13)	// https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf	const fresnel = exp2( mul( sub( mul( - 5.55473, dotVH ), 6.98316 ), dotVH ) );	return add( mul( f0, sub( 1.0, fresnel ) ), mul( f90, fresnel ) );} ); // validatedexport const BRDF_Lambert = new ShaderNode( ( inputs ) => {	return mul( RECIPROCAL_PI, inputs.diffuseColor ); // punctual light} ); // validatedexport const getDistanceAttenuation = new ShaderNode( ( inputs ) => {	const { lightDistance, cutoffDistance, decayExponent } = inputs;	return cond(		and( greaterThan( cutoffDistance, 0 ), greaterThan( decayExponent, 0 ) ),		pow( saturate( add( div( negate( lightDistance ), cutoffDistance ), 1.0 ) ), decayExponent ),		1.0	);} ); // validated//// STANDARD//// Moving Frostbite to Physically Based Rendering 3.0 - page 12, listing 2// https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdfexport const V_GGX_SmithCorrelated = new ShaderNode( ( inputs ) => {	const { alpha, dotNL, dotNV } = inputs;	const a2 = pow2( alpha );	const gv = mul( dotNL, sqrt( add( a2, mul( sub( 1.0, a2 ), pow2( dotNV ) ) ) ) );	const gl = mul( dotNV, sqrt( add( a2, mul( sub( 1.0, a2 ), pow2( dotNL ) ) ) ) );	return div( 0.5, max( add( gv, gl ), EPSILON ) );} ); // validated// Microfacet Models for Refraction through Rough Surfaces - equation (33)// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html// alpha is "roughness squared" in Disney’s reparameterizationexport const D_GGX = new ShaderNode( ( inputs ) => {	const { alpha, dotNH } = inputs;	const a2 = pow2( alpha );	const denom = add( mul( pow2( dotNH ), sub( a2, 1.0 ) ), 1.0 ); // avoid alpha = 0 with dotNH = 1	return mul( RECIPROCAL_PI, div( a2, pow2( denom ) ) );} ); // validated// GGX Distribution, Schlick Fresnel, GGX_SmithCorrelated Visibilityexport const BRDF_Specular_GGX = new ShaderNode( ( inputs ) => {	const { lightDirection, f0, f90, roughness } = inputs;	const alpha = pow2( roughness ); // UE4's roughness	const halfDir = normalize( add( lightDirection, positionViewDirection ) );	const dotNL = saturate( dot( transformedNormalView, lightDirection ) );	const dotNV = saturate( dot( transformedNormalView, positionViewDirection ) );	const dotNH = saturate( dot( transformedNormalView, halfDir ) );	const dotVH = saturate( dot( positionViewDirection, halfDir ) );	const F = F_Schlick( { f0, f90, dotVH } );	const V = V_GGX_SmithCorrelated( { alpha, dotNL, dotNV } );	const D = D_GGX( { alpha, dotNH } );	return mul( F, mul( V, D ) );} ); // validatedexport const RE_Direct_Physical = new ShaderNode( ( inputs ) => {	const { lightDirection, lightColor, directDiffuse, directSpecular } = inputs;	const dotNL = saturate( dot( transformedNormalView, lightDirection ) );	let irradiance = mul( dotNL, lightColor );	irradiance = mul( irradiance, PI ); // punctual light	addTo( directDiffuse, mul( irradiance, BRDF_Lambert( { diffuseColor } ) ) );	addTo( directSpecular, mul( irradiance, BRDF_Specular_GGX( { lightDirection, f0: specularColor, f90: 1, roughness } ) ) );} );export const PhysicalLightingModel = new ShaderNode( ( inputs/*, builder*/ ) => {	// PHYSICALLY_CORRECT_LIGHTS <-> builder.renderer.physicallyCorrectLights === true	RE_Direct_Physical( inputs );} );
 |