| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362 | import {	Clock,	Color,	LinearEncoding,	Matrix4,	Mesh,	RepeatWrapping,	ShaderMaterial,	TextureLoader,	UniformsLib,	UniformsUtils,	Vector2,	Vector4} from '../../../build/three.module.js';import { Reflector } from '../objects/Reflector.js';import { Refractor } from '../objects/Refractor.js';/** * References: *	http://www.valvesoftware.com/publications/2010/siggraph2010_vlachos_waterflow.pdf * 	http://graphicsrunner.blogspot.de/2010/08/water-using-flow-maps.html * */class Water extends Mesh {	constructor( geometry, options = {} ) {		super( geometry );		this.type = 'Water';		const scope = this;		const color = ( options.color !== undefined ) ? new Color( options.color ) : new Color( 0xFFFFFF );		const textureWidth = options.textureWidth || 512;		const textureHeight = options.textureHeight || 512;		const clipBias = options.clipBias || 0;		const flowDirection = options.flowDirection || new Vector2( 1, 0 );		const flowSpeed = options.flowSpeed || 0.03;		const reflectivity = options.reflectivity || 0.02;		const scale = options.scale || 1;		const shader = options.shader || Water.WaterShader;		const encoding = options.encoding !== undefined ? options.encoding : LinearEncoding;		const textureLoader = new TextureLoader();		const flowMap = options.flowMap || undefined;		const normalMap0 = options.normalMap0 || textureLoader.load( 'textures/water/Water_1_M_Normal.jpg' );		const normalMap1 = options.normalMap1 || textureLoader.load( 'textures/water/Water_2_M_Normal.jpg' );		const cycle = 0.15; // a cycle of a flow map phase		const halfCycle = cycle * 0.5;		const textureMatrix = new Matrix4();		const clock = new Clock();		// internal components		if ( Reflector === undefined ) {			console.error( 'THREE.Water: Required component Reflector not found.' );			return;		}		if ( Refractor === undefined ) {			console.error( 'THREE.Water: Required component Refractor not found.' );			return;		}		const reflector = new Reflector( geometry, {			textureWidth: textureWidth,			textureHeight: textureHeight,			clipBias: clipBias,			encoding: encoding		} );		const refractor = new Refractor( geometry, {			textureWidth: textureWidth,			textureHeight: textureHeight,			clipBias: clipBias,			encoding: encoding		} );		reflector.matrixAutoUpdate = false;		refractor.matrixAutoUpdate = false;		// material		this.material = new ShaderMaterial( {			uniforms: UniformsUtils.merge( [				UniformsLib[ 'fog' ],				shader.uniforms			] ),			vertexShader: shader.vertexShader,			fragmentShader: shader.fragmentShader,			transparent: true,			fog: true		} );		if ( flowMap !== undefined ) {			this.material.defines.USE_FLOWMAP = '';			this.material.uniforms[ 'tFlowMap' ] = {				type: 't',				value: flowMap			};		} else {			this.material.uniforms[ 'flowDirection' ] = {				type: 'v2',				value: flowDirection			};		}		// maps		normalMap0.wrapS = normalMap0.wrapT = RepeatWrapping;		normalMap1.wrapS = normalMap1.wrapT = RepeatWrapping;		this.material.uniforms[ 'tReflectionMap' ].value = reflector.getRenderTarget().texture;		this.material.uniforms[ 'tRefractionMap' ].value = refractor.getRenderTarget().texture;		this.material.uniforms[ 'tNormalMap0' ].value = normalMap0;		this.material.uniforms[ 'tNormalMap1' ].value = normalMap1;		// water		this.material.uniforms[ 'color' ].value = color;		this.material.uniforms[ 'reflectivity' ].value = reflectivity;		this.material.uniforms[ 'textureMatrix' ].value = textureMatrix;		// inital values		this.material.uniforms[ 'config' ].value.x = 0; // flowMapOffset0		this.material.uniforms[ 'config' ].value.y = halfCycle; // flowMapOffset1		this.material.uniforms[ 'config' ].value.z = halfCycle; // halfCycle		this.material.uniforms[ 'config' ].value.w = scale; // scale		// functions		function updateTextureMatrix( camera ) {			textureMatrix.set(				0.5, 0.0, 0.0, 0.5,				0.0, 0.5, 0.0, 0.5,				0.0, 0.0, 0.5, 0.5,				0.0, 0.0, 0.0, 1.0			);			textureMatrix.multiply( camera.projectionMatrix );			textureMatrix.multiply( camera.matrixWorldInverse );			textureMatrix.multiply( scope.matrixWorld );		}		function updateFlow() {			const delta = clock.getDelta();			const config = scope.material.uniforms[ 'config' ];			config.value.x += flowSpeed * delta; // flowMapOffset0			config.value.y = config.value.x + halfCycle; // flowMapOffset1			// Important: The distance between offsets should be always the value of "halfCycle".			// Moreover, both offsets should be in the range of [ 0, cycle ].			// This approach ensures a smooth water flow and avoids "reset" effects.			if ( config.value.x >= cycle ) {				config.value.x = 0;				config.value.y = halfCycle;			} else if ( config.value.y >= cycle ) {				config.value.y = config.value.y - cycle;			}		}		//		this.onBeforeRender = function ( renderer, scene, camera ) {			updateTextureMatrix( camera );			updateFlow();			scope.visible = false;			reflector.matrixWorld.copy( scope.matrixWorld );			refractor.matrixWorld.copy( scope.matrixWorld );			reflector.onBeforeRender( renderer, scene, camera );			refractor.onBeforeRender( renderer, scene, camera );			scope.visible = true;		};	}}Water.prototype.isWater = true;Water.WaterShader = {	uniforms: {		'color': {			type: 'c',			value: null		},		'reflectivity': {			type: 'f',			value: 0		},		'tReflectionMap': {			type: 't',			value: null		},		'tRefractionMap': {			type: 't',			value: null		},		'tNormalMap0': {			type: 't',			value: null		},		'tNormalMap1': {			type: 't',			value: null		},		'textureMatrix': {			type: 'm4',			value: null		},		'config': {			type: 'v4',			value: new Vector4()		}	},	vertexShader: /* glsl */`		#include <common>		#include <fog_pars_vertex>		#include <logdepthbuf_pars_vertex>		uniform mat4 textureMatrix;		varying vec4 vCoord;		varying vec2 vUv;		varying vec3 vToEye;		void main() {			vUv = uv;			vCoord = textureMatrix * vec4( position, 1.0 );			vec4 worldPosition = modelMatrix * vec4( position, 1.0 );			vToEye = cameraPosition - worldPosition.xyz;			vec4 mvPosition =  viewMatrix * worldPosition; // used in fog_vertex			gl_Position = projectionMatrix * mvPosition;			#include <logdepthbuf_vertex>			#include <fog_vertex>		}`,	fragmentShader: /* glsl */`		#include <common>		#include <fog_pars_fragment>		#include <logdepthbuf_pars_fragment>		uniform sampler2D tReflectionMap;		uniform sampler2D tRefractionMap;		uniform sampler2D tNormalMap0;		uniform sampler2D tNormalMap1;		#ifdef USE_FLOWMAP			uniform sampler2D tFlowMap;		#else			uniform vec2 flowDirection;		#endif		uniform vec3 color;		uniform float reflectivity;		uniform vec4 config;		varying vec4 vCoord;		varying vec2 vUv;		varying vec3 vToEye;		void main() {			#include <logdepthbuf_fragment>			float flowMapOffset0 = config.x;			float flowMapOffset1 = config.y;			float halfCycle = config.z;			float scale = config.w;			vec3 toEye = normalize( vToEye );			// determine flow direction			vec2 flow;			#ifdef USE_FLOWMAP				flow = texture2D( tFlowMap, vUv ).rg * 2.0 - 1.0;			#else				flow = flowDirection;			#endif			flow.x *= - 1.0;			// sample normal maps (distort uvs with flowdata)			vec4 normalColor0 = texture2D( tNormalMap0, ( vUv * scale ) + flow * flowMapOffset0 );			vec4 normalColor1 = texture2D( tNormalMap1, ( vUv * scale ) + flow * flowMapOffset1 );			// linear interpolate to get the final normal color			float flowLerp = abs( halfCycle - flowMapOffset0 ) / halfCycle;			vec4 normalColor = mix( normalColor0, normalColor1, flowLerp );			// calculate normal vector			vec3 normal = normalize( vec3( normalColor.r * 2.0 - 1.0, normalColor.b,  normalColor.g * 2.0 - 1.0 ) );			// calculate the fresnel term to blend reflection and refraction maps			float theta = max( dot( toEye, normal ), 0.0 );			float reflectance = reflectivity + ( 1.0 - reflectivity ) * pow( ( 1.0 - theta ), 5.0 );			// calculate final uv coords			vec3 coord = vCoord.xyz / vCoord.w;			vec2 uv = coord.xy + coord.z * normal.xz * 0.05;			vec4 reflectColor = texture2D( tReflectionMap, vec2( 1.0 - uv.x, uv.y ) );			vec4 refractColor = texture2D( tRefractionMap, uv );			// multiply water color with the mix of both textures			gl_FragColor = vec4( color, 1.0 ) * mix( refractColor, reflectColor, reflectance );			#include <tonemapping_fragment>			#include <encodings_fragment>			#include <fog_fragment>		}`};export { Water };
 |