| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 | 
							- ( function () {
 
- 	/**
 
-  * Shaders to render 3D volumes using raycasting.
 
-  * The applied techniques are based on similar implementations in the Visvis and Vispy projects.
 
-  * This is not the only approach, therefore it's marked 1.
 
-  */
 
- 	const VolumeRenderShader1 = {
 
- 		uniforms: {
 
- 			'u_size': {
 
- 				value: new THREE.Vector3( 1, 1, 1 )
 
- 			},
 
- 			'u_renderstyle': {
 
- 				value: 0
 
- 			},
 
- 			'u_renderthreshold': {
 
- 				value: 0.5
 
- 			},
 
- 			'u_clim': {
 
- 				value: new THREE.Vector2( 1, 1 )
 
- 			},
 
- 			'u_data': {
 
- 				value: null
 
- 			},
 
- 			'u_cmdata': {
 
- 				value: null
 
- 			}
 
- 		},
 
- 		vertexShader:
 
-   /* glsl */
 
-   `
 
- 		varying vec4 v_nearpos;
 
- 		varying vec4 v_farpos;
 
- 		varying vec3 v_position;
 
- 		void main() {
 
- 				// Prepare transforms to map to "camera view". See also:
 
- 				// https://threejs.org/docs/#api/renderers/webgl/WebGLProgram
 
- 				mat4 viewtransformf = modelViewMatrix;
 
- 				mat4 viewtransformi = inverse(modelViewMatrix);
 
- 				// Project local vertex coordinate to camera position. Then do a step
 
- 				// backward (in cam coords) to the near clipping plane, and project back. Do
 
- 				// the same for the far clipping plane. This gives us all the information we
 
- 				// need to calculate the ray and truncate it to the viewing cone.
 
- 				vec4 position4 = vec4(position, 1.0);
 
- 				vec4 pos_in_cam = viewtransformf * position4;
 
- 				// Intersection of ray and near clipping plane (z = -1 in clip coords)
 
- 				pos_in_cam.z = -pos_in_cam.w;
 
- 				v_nearpos = viewtransformi * pos_in_cam;
 
- 				// Intersection of ray and far clipping plane (z = +1 in clip coords)
 
- 				pos_in_cam.z = pos_in_cam.w;
 
- 				v_farpos = viewtransformi * pos_in_cam;
 
- 				// Set varyings and output pos
 
- 				v_position = position;
 
- 				gl_Position = projectionMatrix * viewMatrix * modelMatrix * position4;
 
- 		}`,
 
- 		fragmentShader:
 
-   /* glsl */
 
-   `
 
- 				precision highp float;
 
- 				precision mediump sampler3D;
 
- 				uniform vec3 u_size;
 
- 				uniform int u_renderstyle;
 
- 				uniform float u_renderthreshold;
 
- 				uniform vec2 u_clim;
 
- 				uniform sampler3D u_data;
 
- 				uniform sampler2D u_cmdata;
 
- 				varying vec3 v_position;
 
- 				varying vec4 v_nearpos;
 
- 				varying vec4 v_farpos;
 
- 				// The maximum distance through our rendering volume is sqrt(3).
 
- 				const int MAX_STEPS = 887;	// 887 for 512^3, 1774 for 1024^3
 
- 				const int REFINEMENT_STEPS = 4;
 
- 				const float relative_step_size = 1.0;
 
- 				const vec4 ambient_color = vec4(0.2, 0.4, 0.2, 1.0);
 
- 				const vec4 diffuse_color = vec4(0.8, 0.2, 0.2, 1.0);
 
- 				const vec4 specular_color = vec4(1.0, 1.0, 1.0, 1.0);
 
- 				const float shininess = 40.0;
 
- 				void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);
 
- 				void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray);
 
- 				float sample1(vec3 texcoords);
 
- 				vec4 apply_colormap(float val);
 
- 				vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray);
 
- 				void main() {
 
- 						// Normalize clipping plane info
 
- 						vec3 farpos = v_farpos.xyz / v_farpos.w;
 
- 						vec3 nearpos = v_nearpos.xyz / v_nearpos.w;
 
- 						// Calculate unit vector pointing in the view direction through this fragment.
 
- 						vec3 view_ray = normalize(nearpos.xyz - farpos.xyz);
 
- 						// Compute the (negative) distance to the front surface or near clipping plane.
 
- 						// v_position is the back face of the cuboid, so the initial distance calculated in the dot
 
- 						// product below is the distance from near clip plane to the back of the cuboid
 
- 						float distance = dot(nearpos - v_position, view_ray);
 
- 						distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,
 
- 																				(u_size.x - 0.5 - v_position.x) / view_ray.x));
 
- 						distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,
 
- 																				(u_size.y - 0.5 - v_position.y) / view_ray.y));
 
- 						distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,
 
- 																				(u_size.z - 0.5 - v_position.z) / view_ray.z));
 
- 						// Now we have the starting position on the front surface
 
- 						vec3 front = v_position + view_ray * distance;
 
- 						// Decide how many steps to take
 
- 						int nsteps = int(-distance / relative_step_size + 0.5);
 
- 						if ( nsteps < 1 )
 
- 								discard;
 
- 						// Get starting location and step vector in texture coordinates
 
- 						vec3 step = ((v_position - front) / u_size) / float(nsteps);
 
- 						vec3 start_loc = front / u_size;
 
- 						// For testing: show the number of steps. This helps to establish
 
- 						// whether the rays are correctly oriented
 
- 						//'gl_FragColor = vec4(0.0, float(nsteps) / 1.0 / u_size.x, 1.0, 1.0);
 
- 						//'return;
 
- 						if (u_renderstyle == 0)
 
- 								cast_mip(start_loc, step, nsteps, view_ray);
 
- 						else if (u_renderstyle == 1)
 
- 								cast_iso(start_loc, step, nsteps, view_ray);
 
- 						if (gl_FragColor.a < 0.05)
 
- 								discard;
 
- 				}
 
- 				float sample1(vec3 texcoords) {
 
- 						/* Sample float value from a 3D texture. Assumes intensity data. */
 
- 						return texture(u_data, texcoords.xyz).r;
 
- 				}
 
- 				vec4 apply_colormap(float val) {
 
- 						val = (val - u_clim[0]) / (u_clim[1] - u_clim[0]);
 
- 						return texture2D(u_cmdata, vec2(val, 0.5));
 
- 				}
 
- 				void cast_mip(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {
 
- 						float max_val = -1e6;
 
- 						int max_i = 100;
 
- 						vec3 loc = start_loc;
 
- 						// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
 
- 						// non-constant expression. So we use a hard-coded max, and an additional condition
 
- 						// inside the loop.
 
- 						for (int iter=0; iter<MAX_STEPS; iter++) {
 
- 								if (iter >= nsteps)
 
- 										break;
 
- 								// Sample from the 3D texture
 
- 								float val = sample1(loc);
 
- 								// Apply MIP operation
 
- 								if (val > max_val) {
 
- 										max_val = val;
 
- 										max_i = iter;
 
- 								}
 
- 								// Advance location deeper into the volume
 
- 								loc += step;
 
- 						}
 
- 						// Refine location, gives crispier images
 
- 						vec3 iloc = start_loc + step * (float(max_i) - 0.5);
 
- 						vec3 istep = step / float(REFINEMENT_STEPS);
 
- 						for (int i=0; i<REFINEMENT_STEPS; i++) {
 
- 								max_val = max(max_val, sample1(iloc));
 
- 								iloc += istep;
 
- 						}
 
- 						// Resolve final color
 
- 						gl_FragColor = apply_colormap(max_val);
 
- 				}
 
- 				void cast_iso(vec3 start_loc, vec3 step, int nsteps, vec3 view_ray) {
 
- 						gl_FragColor = vec4(0.0);	// init transparent
 
- 						vec4 color3 = vec4(0.0);	// final color
 
- 						vec3 dstep = 1.5 / u_size;	// step to sample derivative
 
- 						vec3 loc = start_loc;
 
- 						float low_threshold = u_renderthreshold - 0.02 * (u_clim[1] - u_clim[0]);
 
- 						// Enter the raycasting loop. In WebGL 1 the loop index cannot be compared with
 
- 						// non-constant expression. So we use a hard-coded max, and an additional condition
 
- 						// inside the loop.
 
- 						for (int iter=0; iter<MAX_STEPS; iter++) {
 
- 								if (iter >= nsteps)
 
- 										break;
 
- 								// Sample from the 3D texture
 
- 								float val = sample1(loc);
 
- 								if (val > low_threshold) {
 
- 										// Take the last interval in smaller steps
 
- 										vec3 iloc = loc - 0.5 * step;
 
- 										vec3 istep = step / float(REFINEMENT_STEPS);
 
- 										for (int i=0; i<REFINEMENT_STEPS; i++) {
 
- 												val = sample1(iloc);
 
- 												if (val > u_renderthreshold) {
 
- 														gl_FragColor = add_lighting(val, iloc, dstep, view_ray);
 
- 														return;
 
- 												}
 
- 												iloc += istep;
 
- 										}
 
- 								}
 
- 								// Advance location deeper into the volume
 
- 								loc += step;
 
- 						}
 
- 				}
 
- 				vec4 add_lighting(float val, vec3 loc, vec3 step, vec3 view_ray)
 
- 				{
 
- 					// Calculate color by incorporating lighting
 
- 						// View direction
 
- 						vec3 V = normalize(view_ray);
 
- 						// calculate normal vector from gradient
 
- 						vec3 N;
 
- 						float val1, val2;
 
- 						val1 = sample1(loc + vec3(-step[0], 0.0, 0.0));
 
- 						val2 = sample1(loc + vec3(+step[0], 0.0, 0.0));
 
- 						N[0] = val1 - val2;
 
- 						val = max(max(val1, val2), val);
 
- 						val1 = sample1(loc + vec3(0.0, -step[1], 0.0));
 
- 						val2 = sample1(loc + vec3(0.0, +step[1], 0.0));
 
- 						N[1] = val1 - val2;
 
- 						val = max(max(val1, val2), val);
 
- 						val1 = sample1(loc + vec3(0.0, 0.0, -step[2]));
 
- 						val2 = sample1(loc + vec3(0.0, 0.0, +step[2]));
 
- 						N[2] = val1 - val2;
 
- 						val = max(max(val1, val2), val);
 
- 						float gm = length(N); // gradient magnitude
 
- 						N = normalize(N);
 
- 						// Flip normal so it points towards viewer
 
- 						float Nselect = float(dot(N, V) > 0.0);
 
- 						N = (2.0 * Nselect - 1.0) * N;	// ==	Nselect * N - (1.0-Nselect)*N;
 
- 						// Init colors
 
- 						vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);
 
- 						vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);
 
- 						vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);
 
- 						// note: could allow multiple lights
 
- 						for (int i=0; i<1; i++)
 
- 						{
 
- 								 // Get light direction (make sure to prevent zero devision)
 
- 								vec3 L = normalize(view_ray);	//lightDirs[i];
 
- 								float lightEnabled = float( length(L) > 0.0 );
 
- 								L = normalize(L + (1.0 - lightEnabled));
 
- 								// Calculate lighting properties
 
- 								float lambertTerm = clamp(dot(N, L), 0.0, 1.0);
 
- 								vec3 H = normalize(L+V); // Halfway vector
 
- 								float specularTerm = pow(max(dot(H, N), 0.0), shininess);
 
- 								// Calculate mask
 
- 								float mask1 = lightEnabled;
 
- 								// Calculate colors
 
- 								ambient_color +=	mask1 * ambient_color;	// * gl_LightSource[i].ambient;
 
- 								diffuse_color +=	mask1 * lambertTerm;
 
- 								specular_color += mask1 * specularTerm * specular_color;
 
- 						}
 
- 						// Calculate final color by componing different components
 
- 						vec4 final_color;
 
- 						vec4 color = apply_colormap(val);
 
- 						final_color = color * (ambient_color + diffuse_color) + specular_color;
 
- 						final_color.a = color.a;
 
- 						return final_color;
 
- 				}`
 
- 	};
 
- 	THREE.VolumeRenderShader1 = VolumeRenderShader1;
 
- } )();
 
 
  |