| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309 | ( function () {	/** * References: *	http://www.valvesoftware.com/publications/2010/siggraph2010_vlachos_waterflow.pdf * 	http://graphicsrunner.blogspot.de/2010/08/water-using-flow-maps.html * */	class Water extends THREE.Mesh {		constructor( geometry, options = {} ) {			super( geometry );			this.type = 'Water';			const scope = this;			const color = options.color !== undefined ? new THREE.Color( options.color ) : new THREE.Color( 0xFFFFFF );			const textureWidth = options.textureWidth || 512;			const textureHeight = options.textureHeight || 512;			const clipBias = options.clipBias || 0;			const flowDirection = options.flowDirection || new THREE.Vector2( 1, 0 );			const flowSpeed = options.flowSpeed || 0.03;			const reflectivity = options.reflectivity || 0.02;			const scale = options.scale || 1;			const shader = options.shader || Water.WaterShader;			const encoding = options.encoding !== undefined ? options.encoding : THREE.LinearEncoding;			const textureLoader = new THREE.TextureLoader();			const flowMap = options.flowMap || undefined;			const normalMap0 = options.normalMap0 || textureLoader.load( 'textures/water/Water_1_M_Normal.jpg' );			const normalMap1 = options.normalMap1 || textureLoader.load( 'textures/water/Water_2_M_Normal.jpg' );			const cycle = 0.15; // a cycle of a flow map phase			const halfCycle = cycle * 0.5;			const textureMatrix = new THREE.Matrix4();			const clock = new THREE.Clock(); // internal components			if ( THREE.Reflector === undefined ) {				console.error( 'THREE.Water: Required component THREE.Reflector not found.' );				return;			}			if ( THREE.Refractor === undefined ) {				console.error( 'THREE.Water: Required component THREE.Refractor not found.' );				return;			}			const reflector = new THREE.Reflector( geometry, {				textureWidth: textureWidth,				textureHeight: textureHeight,				clipBias: clipBias,				encoding: encoding			} );			const refractor = new THREE.Refractor( geometry, {				textureWidth: textureWidth,				textureHeight: textureHeight,				clipBias: clipBias,				encoding: encoding			} );			reflector.matrixAutoUpdate = false;			refractor.matrixAutoUpdate = false; // material			this.material = new THREE.ShaderMaterial( {				uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ 'fog' ], shader.uniforms ] ),				vertexShader: shader.vertexShader,				fragmentShader: shader.fragmentShader,				transparent: true,				fog: true			} );			if ( flowMap !== undefined ) {				this.material.defines.USE_FLOWMAP = '';				this.material.uniforms[ 'tFlowMap' ] = {					type: 't',					value: flowMap				};			} else {				this.material.uniforms[ 'flowDirection' ] = {					type: 'v2',					value: flowDirection				};			} // maps			normalMap0.wrapS = normalMap0.wrapT = THREE.RepeatWrapping;			normalMap1.wrapS = normalMap1.wrapT = THREE.RepeatWrapping;			this.material.uniforms[ 'tReflectionMap' ].value = reflector.getRenderTarget().texture;			this.material.uniforms[ 'tRefractionMap' ].value = refractor.getRenderTarget().texture;			this.material.uniforms[ 'tNormalMap0' ].value = normalMap0;			this.material.uniforms[ 'tNormalMap1' ].value = normalMap1; // water			this.material.uniforms[ 'color' ].value = color;			this.material.uniforms[ 'reflectivity' ].value = reflectivity;			this.material.uniforms[ 'textureMatrix' ].value = textureMatrix; // inital values			this.material.uniforms[ 'config' ].value.x = 0; // flowMapOffset0			this.material.uniforms[ 'config' ].value.y = halfCycle; // flowMapOffset1			this.material.uniforms[ 'config' ].value.z = halfCycle; // halfCycle			this.material.uniforms[ 'config' ].value.w = scale; // scale			// functions			function updateTextureMatrix( camera ) {				textureMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 );				textureMatrix.multiply( camera.projectionMatrix );				textureMatrix.multiply( camera.matrixWorldInverse );				textureMatrix.multiply( scope.matrixWorld );			}			function updateFlow() {				const delta = clock.getDelta();				const config = scope.material.uniforms[ 'config' ];				config.value.x += flowSpeed * delta; // flowMapOffset0				config.value.y = config.value.x + halfCycle; // flowMapOffset1				// Important: The distance between offsets should be always the value of "halfCycle".				// Moreover, both offsets should be in the range of [ 0, cycle ].				// This approach ensures a smooth water flow and avoids "reset" effects.				if ( config.value.x >= cycle ) {					config.value.x = 0;					config.value.y = halfCycle;				} else if ( config.value.y >= cycle ) {					config.value.y = config.value.y - cycle;				}			} //			this.onBeforeRender = function ( renderer, scene, camera ) {				updateTextureMatrix( camera );				updateFlow();				scope.visible = false;				reflector.matrixWorld.copy( scope.matrixWorld );				refractor.matrixWorld.copy( scope.matrixWorld );				reflector.onBeforeRender( renderer, scene, camera );				refractor.onBeforeRender( renderer, scene, camera );				scope.visible = true;			};		}	}	Water.prototype.isWater = true;	Water.WaterShader = {		uniforms: {			'color': {				type: 'c',				value: null			},			'reflectivity': {				type: 'f',				value: 0			},			'tReflectionMap': {				type: 't',				value: null			},			'tRefractionMap': {				type: 't',				value: null			},			'tNormalMap0': {				type: 't',				value: null			},			'tNormalMap1': {				type: 't',				value: null			},			'textureMatrix': {				type: 'm4',				value: null			},			'config': {				type: 'v4',				value: new THREE.Vector4()			}		},		vertexShader:  /* glsl */  `		#include <common>		#include <fog_pars_vertex>		#include <logdepthbuf_pars_vertex>		uniform mat4 textureMatrix;		varying vec4 vCoord;		varying vec2 vUv;		varying vec3 vToEye;		void main() {			vUv = uv;			vCoord = textureMatrix * vec4( position, 1.0 );			vec4 worldPosition = modelMatrix * vec4( position, 1.0 );			vToEye = cameraPosition - worldPosition.xyz;			vec4 mvPosition =  viewMatrix * worldPosition; // used in fog_vertex			gl_Position = projectionMatrix * mvPosition;			#include <logdepthbuf_vertex>			#include <fog_vertex>		}`,		fragmentShader:  /* glsl */  `		#include <common>		#include <fog_pars_fragment>		#include <logdepthbuf_pars_fragment>		uniform sampler2D tReflectionMap;		uniform sampler2D tRefractionMap;		uniform sampler2D tNormalMap0;		uniform sampler2D tNormalMap1;		#ifdef USE_FLOWMAP			uniform sampler2D tFlowMap;		#else			uniform vec2 flowDirection;		#endif		uniform vec3 color;		uniform float reflectivity;		uniform vec4 config;		varying vec4 vCoord;		varying vec2 vUv;		varying vec3 vToEye;		void main() {			#include <logdepthbuf_fragment>			float flowMapOffset0 = config.x;			float flowMapOffset1 = config.y;			float halfCycle = config.z;			float scale = config.w;			vec3 toEye = normalize( vToEye );			// determine flow direction			vec2 flow;			#ifdef USE_FLOWMAP				flow = texture2D( tFlowMap, vUv ).rg * 2.0 - 1.0;			#else				flow = flowDirection;			#endif			flow.x *= - 1.0;			// sample normal maps (distort uvs with flowdata)			vec4 normalColor0 = texture2D( tNormalMap0, ( vUv * scale ) + flow * flowMapOffset0 );			vec4 normalColor1 = texture2D( tNormalMap1, ( vUv * scale ) + flow * flowMapOffset1 );			// linear interpolate to get the final normal color			float flowLerp = abs( halfCycle - flowMapOffset0 ) / halfCycle;			vec4 normalColor = mix( normalColor0, normalColor1, flowLerp );			// calculate normal vector			vec3 normal = normalize( vec3( normalColor.r * 2.0 - 1.0, normalColor.b,  normalColor.g * 2.0 - 1.0 ) );			// calculate the fresnel term to blend reflection and refraction maps			float theta = max( dot( toEye, normal ), 0.0 );			float reflectance = reflectivity + ( 1.0 - reflectivity ) * pow( ( 1.0 - theta ), 5.0 );			// calculate final uv coords			vec3 coord = vCoord.xyz / vCoord.w;			vec2 uv = coord.xy + coord.z * normal.xz * 0.05;			vec4 reflectColor = texture2D( tReflectionMap, vec2( 1.0 - uv.x, uv.y ) );			vec4 refractColor = texture2D( tRefractionMap, uv );			// multiply water color with the mix of both textures			gl_FragColor = vec4( color, 1.0 ) * mix( refractColor, reflectColor, reflectance );			#include <tonemapping_fragment>			#include <encodings_fragment>			#include <fog_fragment>		}`	};	THREE.Water = Water;} )();
 |