| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485 | ( function () {	/** *	Simplification Geometry Modifier *    - based on code and technique *	  - by Stan Melax in 1998 *	  - Progressive Mesh type Polygon Reduction Algorithm *    - http://www.melax.com/polychop/ */	const _cb = new THREE.Vector3(),		_ab = new THREE.Vector3();	class SimplifyModifier {		constructor() {			if ( THREE.BufferGeometryUtils === undefined ) {				throw 'THREE.SimplifyModifier relies on THREE.BufferGeometryUtils';			}		}		modify( geometry, count ) {			if ( geometry.isGeometry === true ) {				console.error( 'THREE.SimplifyModifier no longer supports Geometry. Use THREE.BufferGeometry instead.' );				return;			}			geometry = geometry.clone();			const attributes = geometry.attributes; // this modifier can only process indexed and non-indexed geomtries with a position attribute			for ( const name in attributes ) {				if ( name !== 'position' ) geometry.deleteAttribute( name );			}			geometry = THREE.BufferGeometryUtils.mergeVertices( geometry ); //			// put data of original geometry in different data structures			//			const vertices = [];			const faces = []; // add vertices			const positionAttribute = geometry.getAttribute( 'position' );			for ( let i = 0; i < positionAttribute.count; i ++ ) {				const v = new THREE.Vector3().fromBufferAttribute( positionAttribute, i );				const vertex = new Vertex( v );				vertices.push( vertex );			} // add faces			let index = geometry.getIndex();			if ( index !== null ) {				for ( let i = 0; i < index.count; i += 3 ) {					const a = index.getX( i );					const b = index.getX( i + 1 );					const c = index.getX( i + 2 );					const triangle = new Triangle( vertices[ a ], vertices[ b ], vertices[ c ], a, b, c );					faces.push( triangle );				}			} else {				for ( let i = 0; i < positionAttribute.count; i += 3 ) {					const a = i;					const b = i + 1;					const c = i + 2;					const triangle = new Triangle( vertices[ a ], vertices[ b ], vertices[ c ], a, b, c );					faces.push( triangle );				}			} // compute all edge collapse costs			for ( let i = 0, il = vertices.length; i < il; i ++ ) {				computeEdgeCostAtVertex( vertices[ i ] );			}			let nextVertex;			let z = count;			while ( z -- ) {				nextVertex = minimumCostEdge( vertices );				if ( ! nextVertex ) {					console.log( 'THREE.SimplifyModifier: No next vertex' );					break;				}				collapse( vertices, faces, nextVertex, nextVertex.collapseNeighbor );			} //			const simplifiedGeometry = new THREE.BufferGeometry();			const position = [];			index = []; //			for ( let i = 0; i < vertices.length; i ++ ) {				const vertex = vertices[ i ].position;				position.push( vertex.x, vertex.y, vertex.z ); // cache final index to GREATLY speed up faces reconstruction				vertices[ i ].id = i;			} //			for ( let i = 0; i < faces.length; i ++ ) {				const face = faces[ i ];				index.push( face.v1.id, face.v2.id, face.v3.id );			} //			simplifiedGeometry.setAttribute( 'position', new THREE.Float32BufferAttribute( position, 3 ) );			simplifiedGeometry.setIndex( index );			return simplifiedGeometry;		}	}	function pushIfUnique( array, object ) {		if ( array.indexOf( object ) === - 1 ) array.push( object );	}	function removeFromArray( array, object ) {		var k = array.indexOf( object );		if ( k > - 1 ) array.splice( k, 1 );	}	function computeEdgeCollapseCost( u, v ) {		// if we collapse edge uv by moving u to v then how		// much different will the model change, i.e. the "error".		const edgelength = v.position.distanceTo( u.position );		let curvature = 0;		const sideFaces = []; // find the "sides" triangles that are on the edge uv		for ( let i = 0, il = u.faces.length; i < il; i ++ ) {			const face = u.faces[ i ];			if ( face.hasVertex( v ) ) {				sideFaces.push( face );			}		} // use the triangle facing most away from the sides		// to determine our curvature term		for ( let i = 0, il = u.faces.length; i < il; i ++ ) {			let minCurvature = 1;			const face = u.faces[ i ];			for ( let j = 0; j < sideFaces.length; j ++ ) {				const sideFace = sideFaces[ j ]; // use dot product of face normals.				const dotProd = face.normal.dot( sideFace.normal );				minCurvature = Math.min( minCurvature, ( 1.001 - dotProd ) / 2 );			}			curvature = Math.max( curvature, minCurvature );		} // crude approach in attempt to preserve borders		// though it seems not to be totally correct		const borders = 0;		if ( sideFaces.length < 2 ) {			// we add some arbitrary cost for borders,			// borders += 10;			curvature = 1;		}		const amt = edgelength * curvature + borders;		return amt;	}	function computeEdgeCostAtVertex( v ) {		// compute the edge collapse cost for all edges that start		// from vertex v.  Since we are only interested in reducing		// the object by selecting the min cost edge at each step, we		// only cache the cost of the least cost edge at this vertex		// (in member variable collapse) as well as the value of the		// cost (in member variable collapseCost).		if ( v.neighbors.length === 0 ) {			// collapse if no neighbors.			v.collapseNeighbor = null;			v.collapseCost = - 0.01;			return;		}		v.collapseCost = 100000;		v.collapseNeighbor = null; // search all neighboring edges for "least cost" edge		for ( let i = 0; i < v.neighbors.length; i ++ ) {			const collapseCost = computeEdgeCollapseCost( v, v.neighbors[ i ] );			if ( ! v.collapseNeighbor ) {				v.collapseNeighbor = v.neighbors[ i ];				v.collapseCost = collapseCost;				v.minCost = collapseCost;				v.totalCost = 0;				v.costCount = 0;			}			v.costCount ++;			v.totalCost += collapseCost;			if ( collapseCost < v.minCost ) {				v.collapseNeighbor = v.neighbors[ i ];				v.minCost = collapseCost;			}		} // we average the cost of collapsing at this vertex		v.collapseCost = v.totalCost / v.costCount; // v.collapseCost = v.minCost;	}	function removeVertex( v, vertices ) {		console.assert( v.faces.length === 0 );		while ( v.neighbors.length ) {			const n = v.neighbors.pop();			removeFromArray( n.neighbors, v );		}		removeFromArray( vertices, v );	}	function removeFace( f, faces ) {		removeFromArray( faces, f );		if ( f.v1 ) removeFromArray( f.v1.faces, f );		if ( f.v2 ) removeFromArray( f.v2.faces, f );		if ( f.v3 ) removeFromArray( f.v3.faces, f ); // TODO optimize this!		const vs = [ f.v1, f.v2, f.v3 ];		for ( let i = 0; i < 3; i ++ ) {			const v1 = vs[ i ];			const v2 = vs[ ( i + 1 ) % 3 ];			if ( ! v1 || ! v2 ) continue;			v1.removeIfNonNeighbor( v2 );			v2.removeIfNonNeighbor( v1 );		}	}	function collapse( vertices, faces, u, v ) {		// u and v are pointers to vertices of an edge		// Collapse the edge uv by moving vertex u onto v		if ( ! v ) {			// u is a vertex all by itself so just delete it..			removeVertex( u, vertices );			return;		}		const tmpVertices = [];		for ( let i = 0; i < u.neighbors.length; i ++ ) {			tmpVertices.push( u.neighbors[ i ] );		} // delete triangles on edge uv:		for ( let i = u.faces.length - 1; i >= 0; i -- ) {			if ( u.faces[ i ].hasVertex( v ) ) {				removeFace( u.faces[ i ], faces );			}		} // update remaining triangles to have v instead of u		for ( let i = u.faces.length - 1; i >= 0; i -- ) {			u.faces[ i ].replaceVertex( u, v );		}		removeVertex( u, vertices ); // recompute the edge collapse costs in neighborhood		for ( let i = 0; i < tmpVertices.length; i ++ ) {			computeEdgeCostAtVertex( tmpVertices[ i ] );		}	}	function minimumCostEdge( vertices ) {		// O(n * n) approach. TODO optimize this		let least = vertices[ 0 ];		for ( let i = 0; i < vertices.length; i ++ ) {			if ( vertices[ i ].collapseCost < least.collapseCost ) {				least = vertices[ i ];			}		}		return least;	} // we use a triangle class to represent structure of face slightly differently	class Triangle {		constructor( v1, v2, v3, a, b, c ) {			this.a = a;			this.b = b;			this.c = c;			this.v1 = v1;			this.v2 = v2;			this.v3 = v3;			this.normal = new THREE.Vector3();			this.computeNormal();			v1.faces.push( this );			v1.addUniqueNeighbor( v2 );			v1.addUniqueNeighbor( v3 );			v2.faces.push( this );			v2.addUniqueNeighbor( v1 );			v2.addUniqueNeighbor( v3 );			v3.faces.push( this );			v3.addUniqueNeighbor( v1 );			v3.addUniqueNeighbor( v2 );		}		computeNormal() {			const vA = this.v1.position;			const vB = this.v2.position;			const vC = this.v3.position;			_cb.subVectors( vC, vB );			_ab.subVectors( vA, vB );			_cb.cross( _ab ).normalize();			this.normal.copy( _cb );		}		hasVertex( v ) {			return v === this.v1 || v === this.v2 || v === this.v3;		}		replaceVertex( oldv, newv ) {			if ( oldv === this.v1 ) this.v1 = newv; else if ( oldv === this.v2 ) this.v2 = newv; else if ( oldv === this.v3 ) this.v3 = newv;			removeFromArray( oldv.faces, this );			newv.faces.push( this );			oldv.removeIfNonNeighbor( this.v1 );			this.v1.removeIfNonNeighbor( oldv );			oldv.removeIfNonNeighbor( this.v2 );			this.v2.removeIfNonNeighbor( oldv );			oldv.removeIfNonNeighbor( this.v3 );			this.v3.removeIfNonNeighbor( oldv );			this.v1.addUniqueNeighbor( this.v2 );			this.v1.addUniqueNeighbor( this.v3 );			this.v2.addUniqueNeighbor( this.v1 );			this.v2.addUniqueNeighbor( this.v3 );			this.v3.addUniqueNeighbor( this.v1 );			this.v3.addUniqueNeighbor( this.v2 );			this.computeNormal();		}	}	class Vertex {		constructor( v ) {			this.position = v;			this.id = - 1; // external use position in vertices list (for e.g. face generation)			this.faces = []; // faces vertex is connected			this.neighbors = []; // neighbouring vertices aka "adjacentVertices"			// these will be computed in computeEdgeCostAtVertex()			this.collapseCost = 0; // cost of collapsing this vertex, the less the better. aka objdist			this.collapseNeighbor = null; // best candinate for collapsing		}		addUniqueNeighbor( vertex ) {			pushIfUnique( this.neighbors, vertex );		}		removeIfNonNeighbor( n ) {			const neighbors = this.neighbors;			const faces = this.faces;			const offset = neighbors.indexOf( n );			if ( offset === - 1 ) return;			for ( let i = 0; i < faces.length; i ++ ) {				if ( faces[ i ].hasVertex( n ) ) return;			}			neighbors.splice( offset, 1 );		}	}	THREE.SimplifyModifier = SimplifyModifier;} )();
 |