| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409 | import {	Camera,	ClampToEdgeWrapping,	DataTexture,	FloatType,	Mesh,	NearestFilter,	PlaneGeometry,	RGBAFormat,	Scene,	ShaderMaterial,	WebGLRenderTarget} from '../../../build/three.module.js';/** * GPUComputationRenderer, based on SimulationRenderer by zz85 * * The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats * for each compute element (texel) * * Each variable has a fragment shader that defines the computation made to obtain the variable in question. * You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader * (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency. * * The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used * as inputs to render the textures of the next frame. * * The render targets of the variables can be used as input textures for your visualization shaders. * * Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers. * a common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity... * * The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example: * #DEFINE resolution vec2( 1024.0, 1024.0 ) * * ------------- * * Basic use: * * // Initialization... * * // Create computation renderer * const gpuCompute = new GPUComputationRenderer( 1024, 1024, renderer ); * * // Create initial state float textures * const pos0 = gpuCompute.createTexture(); * const vel0 = gpuCompute.createTexture(); * // and fill in here the texture data... * * // Add texture variables * const velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, pos0 ); * const posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, vel0 ); * * // Add variable dependencies * gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] ); * gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] ); * * // Add custom uniforms * velVar.material.uniforms.time = { value: 0.0 }; * * // Check for completeness * const error = gpuCompute.init(); * if ( error !== null ) { *		console.error( error );  * } * * * // In each frame... * * // Compute! * gpuCompute.compute(); * * // Update texture uniforms in your visualization materials with the gpu renderer output * myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture; * * // Do your rendering * renderer.render( myScene, myCamera ); * * ------------- * * Also, you can use utility functions to create ShaderMaterial and perform computations (rendering between textures) * Note that the shaders can have multiple input textures. * * const myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { value: null } } ); * const myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { value: null } } ); * * const inputTexture = gpuCompute.createTexture(); * * // Fill in here inputTexture... * * myFilter1.uniforms.theTexture.value = inputTexture; * * const myRenderTarget = gpuCompute.createRenderTarget(); * myFilter2.uniforms.theTexture.value = myRenderTarget.texture; * * const outputRenderTarget = gpuCompute.createRenderTarget(); * * // Now use the output texture where you want: * myMaterial.uniforms.map.value = outputRenderTarget.texture; * * // And compute each frame, before rendering to screen: * gpuCompute.doRenderTarget( myFilter1, myRenderTarget ); * gpuCompute.doRenderTarget( myFilter2, outputRenderTarget ); * * * * @param {int} sizeX Computation problem size is always 2d: sizeX * sizeY elements. * @param {int} sizeY Computation problem size is always 2d: sizeX * sizeY elements. * @param {WebGLRenderer} renderer The renderer  */class GPUComputationRenderer {	constructor( sizeX, sizeY, renderer ) {		this.variables = [];		this.currentTextureIndex = 0;		let dataType = FloatType;		const scene = new Scene();		const camera = new Camera();		camera.position.z = 1;		const passThruUniforms = {			passThruTexture: { value: null }		};		const passThruShader = createShaderMaterial( getPassThroughFragmentShader(), passThruUniforms );		const mesh = new Mesh( new PlaneGeometry( 2, 2 ), passThruShader );		scene.add( mesh );		this.setDataType = function ( type ) {			dataType = type;			return this;		};		this.addVariable = function ( variableName, computeFragmentShader, initialValueTexture ) {			const material = this.createShaderMaterial( computeFragmentShader );			const variable = {				name: variableName,				initialValueTexture: initialValueTexture,				material: material,				dependencies: null,				renderTargets: [],				wrapS: null,				wrapT: null,				minFilter: NearestFilter,				magFilter: NearestFilter			};			this.variables.push( variable );			return variable;		};		this.setVariableDependencies = function ( variable, dependencies ) {			variable.dependencies = dependencies;		};		this.init = function () {			if ( renderer.capabilities.isWebGL2 === false && renderer.extensions.has( 'OES_texture_float' ) === false ) {				return 'No OES_texture_float support for float textures.';			}			if ( renderer.capabilities.maxVertexTextures === 0 ) {				return 'No support for vertex shader textures.';			}			for ( let i = 0; i < this.variables.length; i ++ ) {				const variable = this.variables[ i ];				// Creates rendertargets and initialize them with input texture				variable.renderTargets[ 0 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );				variable.renderTargets[ 1 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );				this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 0 ] );				this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 1 ] );				// Adds dependencies uniforms to the ShaderMaterial				const material = variable.material;				const uniforms = material.uniforms;				if ( variable.dependencies !== null ) {					for ( let d = 0; d < variable.dependencies.length; d ++ ) {						const depVar = variable.dependencies[ d ];						if ( depVar.name !== variable.name ) {							// Checks if variable exists							let found = false;							for ( let j = 0; j < this.variables.length; j ++ ) {								if ( depVar.name === this.variables[ j ].name ) {									found = true;									break;								}							}							if ( ! found ) {								return 'Variable dependency not found. Variable=' + variable.name + ', dependency=' + depVar.name;							}						}						uniforms[ depVar.name ] = { value: null };						material.fragmentShader = '\nuniform sampler2D ' + depVar.name + ';\n' + material.fragmentShader;					}				}			}			this.currentTextureIndex = 0;			return null;		};		this.compute = function () {			const currentTextureIndex = this.currentTextureIndex;			const nextTextureIndex = this.currentTextureIndex === 0 ? 1 : 0;			for ( let i = 0, il = this.variables.length; i < il; i ++ ) {				const variable = this.variables[ i ];				// Sets texture dependencies uniforms				if ( variable.dependencies !== null ) {					const uniforms = variable.material.uniforms;					for ( let d = 0, dl = variable.dependencies.length; d < dl; d ++ ) {						const depVar = variable.dependencies[ d ];						uniforms[ depVar.name ].value = depVar.renderTargets[ currentTextureIndex ].texture;					}				}				// Performs the computation for this variable				this.doRenderTarget( variable.material, variable.renderTargets[ nextTextureIndex ] );			}			this.currentTextureIndex = nextTextureIndex;		};		this.getCurrentRenderTarget = function ( variable ) {			return variable.renderTargets[ this.currentTextureIndex ];		};		this.getAlternateRenderTarget = function ( variable ) {			return variable.renderTargets[ this.currentTextureIndex === 0 ? 1 : 0 ];		};		function addResolutionDefine( materialShader ) {			materialShader.defines.resolution = 'vec2( ' + sizeX.toFixed( 1 ) + ', ' + sizeY.toFixed( 1 ) + ' )';		}		this.addResolutionDefine = addResolutionDefine;		// The following functions can be used to compute things manually		function createShaderMaterial( computeFragmentShader, uniforms ) {			uniforms = uniforms || {};			const material = new ShaderMaterial( {				uniforms: uniforms,				vertexShader: getPassThroughVertexShader(),				fragmentShader: computeFragmentShader			} );			addResolutionDefine( material );			return material;		}		this.createShaderMaterial = createShaderMaterial;		this.createRenderTarget = function ( sizeXTexture, sizeYTexture, wrapS, wrapT, minFilter, magFilter ) {			sizeXTexture = sizeXTexture || sizeX;			sizeYTexture = sizeYTexture || sizeY;			wrapS = wrapS || ClampToEdgeWrapping;			wrapT = wrapT || ClampToEdgeWrapping;			minFilter = minFilter || NearestFilter;			magFilter = magFilter || NearestFilter;			const renderTarget = new WebGLRenderTarget( sizeXTexture, sizeYTexture, {				wrapS: wrapS,				wrapT: wrapT,				minFilter: minFilter,				magFilter: magFilter,				format: RGBAFormat,				type: dataType,				depthBuffer: false			} );			return renderTarget;		};		this.createTexture = function () {			const data = new Float32Array( sizeX * sizeY * 4 );			return new DataTexture( data, sizeX, sizeY, RGBAFormat, FloatType );		};		this.renderTexture = function ( input, output ) {			// Takes a texture, and render out in rendertarget			// input = Texture			// output = RenderTarget			passThruUniforms.passThruTexture.value = input;			this.doRenderTarget( passThruShader, output );			passThruUniforms.passThruTexture.value = null;		};		this.doRenderTarget = function ( material, output ) {			const currentRenderTarget = renderer.getRenderTarget();			mesh.material = material;			renderer.setRenderTarget( output );			renderer.render( scene, camera );			mesh.material = passThruShader;			renderer.setRenderTarget( currentRenderTarget );		};		// Shaders		function getPassThroughVertexShader() {			return	'void main()	{\n' +					'\n' +					'	gl_Position = vec4( position, 1.0 );\n' +					'\n' +					'}\n';		}		function getPassThroughFragmentShader() {			return	'uniform sampler2D passThruTexture;\n' +					'\n' +					'void main() {\n' +					'\n' +					'	vec2 uv = gl_FragCoord.xy / resolution.xy;\n' +					'\n' +					'	gl_FragColor = texture2D( passThruTexture, uv );\n' +					'\n' +					'}\n';		}	}}export { GPUComputationRenderer };
 |