| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487 | 
							- import {
 
- 	Vector3,
 
- 	Vector4
 
- } from '../../../build/three.module.js';
 
- /**
 
-  * NURBS utils
 
-  *
 
-  * See NURBSCurve and NURBSSurface.
 
-  **/
 
- /**************************************************************
 
-  *	NURBS Utils
 
-  **************************************************************/
 
- /*
 
- Finds knot vector span.
 
- p : degree
 
- u : parametric value
 
- U : knot vector
 
- returns the span
 
- */
 
- function findSpan( p, u, U ) {
 
- 	const n = U.length - p - 1;
 
- 	if ( u >= U[ n ] ) {
 
- 		return n - 1;
 
- 	}
 
- 	if ( u <= U[ p ] ) {
 
- 		return p;
 
- 	}
 
- 	let low = p;
 
- 	let high = n;
 
- 	let mid = Math.floor( ( low + high ) / 2 );
 
- 	while ( u < U[ mid ] || u >= U[ mid + 1 ] ) {
 
- 		if ( u < U[ mid ] ) {
 
- 			high = mid;
 
- 		} else {
 
- 			low = mid;
 
- 		}
 
- 		mid = Math.floor( ( low + high ) / 2 );
 
- 	}
 
- 	return mid;
 
- }
 
- /*
 
- Calculate basis functions. See The NURBS Book, page 70, algorithm A2.2
 
- span : span in which u lies
 
- u    : parametric point
 
- p    : degree
 
- U    : knot vector
 
- returns array[p+1] with basis functions values.
 
- */
 
- function calcBasisFunctions( span, u, p, U ) {
 
- 	const N = [];
 
- 	const left = [];
 
- 	const right = [];
 
- 	N[ 0 ] = 1.0;
 
- 	for ( let j = 1; j <= p; ++ j ) {
 
- 		left[ j ] = u - U[ span + 1 - j ];
 
- 		right[ j ] = U[ span + j ] - u;
 
- 		let saved = 0.0;
 
- 		for ( let r = 0; r < j; ++ r ) {
 
- 			const rv = right[ r + 1 ];
 
- 			const lv = left[ j - r ];
 
- 			const temp = N[ r ] / ( rv + lv );
 
- 			N[ r ] = saved + rv * temp;
 
- 			saved = lv * temp;
 
- 		}
 
- 		N[ j ] = saved;
 
- 	}
 
- 	return N;
 
- }
 
- /*
 
- Calculate B-Spline curve points. See The NURBS Book, page 82, algorithm A3.1.
 
- p : degree of B-Spline
 
- U : knot vector
 
- P : control points (x, y, z, w)
 
- u : parametric point
 
- returns point for given u
 
- */
 
- function calcBSplinePoint( p, U, P, u ) {
 
- 	const span = findSpan( p, u, U );
 
- 	const N = calcBasisFunctions( span, u, p, U );
 
- 	const C = new Vector4( 0, 0, 0, 0 );
 
- 	for ( let j = 0; j <= p; ++ j ) {
 
- 		const point = P[ span - p + j ];
 
- 		const Nj = N[ j ];
 
- 		const wNj = point.w * Nj;
 
- 		C.x += point.x * wNj;
 
- 		C.y += point.y * wNj;
 
- 		C.z += point.z * wNj;
 
- 		C.w += point.w * Nj;
 
- 	}
 
- 	return C;
 
- }
 
- /*
 
- Calculate basis functions derivatives. See The NURBS Book, page 72, algorithm A2.3.
 
- span : span in which u lies
 
- u    : parametric point
 
- p    : degree
 
- n    : number of derivatives to calculate
 
- U    : knot vector
 
- returns array[n+1][p+1] with basis functions derivatives
 
- */
 
- function calcBasisFunctionDerivatives( span, u, p, n, U ) {
 
- 	const zeroArr = [];
 
- 	for ( let i = 0; i <= p; ++ i )
 
- 		zeroArr[ i ] = 0.0;
 
- 	const ders = [];
 
- 	for ( let i = 0; i <= n; ++ i )
 
- 		ders[ i ] = zeroArr.slice( 0 );
 
- 	const ndu = [];
 
- 	for ( let i = 0; i <= p; ++ i )
 
- 		ndu[ i ] = zeroArr.slice( 0 );
 
- 	ndu[ 0 ][ 0 ] = 1.0;
 
- 	const left = zeroArr.slice( 0 );
 
- 	const right = zeroArr.slice( 0 );
 
- 	for ( let j = 1; j <= p; ++ j ) {
 
- 		left[ j ] = u - U[ span + 1 - j ];
 
- 		right[ j ] = U[ span + j ] - u;
 
- 		let saved = 0.0;
 
- 		for ( let r = 0; r < j; ++ r ) {
 
- 			const rv = right[ r + 1 ];
 
- 			const lv = left[ j - r ];
 
- 			ndu[ j ][ r ] = rv + lv;
 
- 			const temp = ndu[ r ][ j - 1 ] / ndu[ j ][ r ];
 
- 			ndu[ r ][ j ] = saved + rv * temp;
 
- 			saved = lv * temp;
 
- 		}
 
- 		ndu[ j ][ j ] = saved;
 
- 	}
 
- 	for ( let j = 0; j <= p; ++ j ) {
 
- 		ders[ 0 ][ j ] = ndu[ j ][ p ];
 
- 	}
 
- 	for ( let r = 0; r <= p; ++ r ) {
 
- 		let s1 = 0;
 
- 		let s2 = 1;
 
- 		const a = [];
 
- 		for ( let i = 0; i <= p; ++ i ) {
 
- 			a[ i ] = zeroArr.slice( 0 );
 
- 		}
 
- 		a[ 0 ][ 0 ] = 1.0;
 
- 		for ( let k = 1; k <= n; ++ k ) {
 
- 			let d = 0.0;
 
- 			const rk = r - k;
 
- 			const pk = p - k;
 
- 			if ( r >= k ) {
 
- 				a[ s2 ][ 0 ] = a[ s1 ][ 0 ] / ndu[ pk + 1 ][ rk ];
 
- 				d = a[ s2 ][ 0 ] * ndu[ rk ][ pk ];
 
- 			}
 
- 			const j1 = ( rk >= - 1 ) ? 1 : - rk;
 
- 			const j2 = ( r - 1 <= pk ) ? k - 1 : p - r;
 
- 			for ( let j = j1; j <= j2; ++ j ) {
 
- 				a[ s2 ][ j ] = ( a[ s1 ][ j ] - a[ s1 ][ j - 1 ] ) / ndu[ pk + 1 ][ rk + j ];
 
- 				d += a[ s2 ][ j ] * ndu[ rk + j ][ pk ];
 
- 			}
 
- 			if ( r <= pk ) {
 
- 				a[ s2 ][ k ] = - a[ s1 ][ k - 1 ] / ndu[ pk + 1 ][ r ];
 
- 				d += a[ s2 ][ k ] * ndu[ r ][ pk ];
 
- 			}
 
- 			ders[ k ][ r ] = d;
 
- 			const j = s1;
 
- 			s1 = s2;
 
- 			s2 = j;
 
- 		}
 
- 	}
 
- 	let r = p;
 
- 	for ( let k = 1; k <= n; ++ k ) {
 
- 		for ( let j = 0; j <= p; ++ j ) {
 
- 			ders[ k ][ j ] *= r;
 
- 		}
 
- 		r *= p - k;
 
- 	}
 
- 	return ders;
 
- }
 
- /*
 
- 	Calculate derivatives of a B-Spline. See The NURBS Book, page 93, algorithm A3.2.
 
- 	p  : degree
 
- 	U  : knot vector
 
- 	P  : control points
 
- 	u  : Parametric points
 
- 	nd : number of derivatives
 
- 	returns array[d+1] with derivatives
 
- 	*/
 
- function calcBSplineDerivatives( p, U, P, u, nd ) {
 
- 	const du = nd < p ? nd : p;
 
- 	const CK = [];
 
- 	const span = findSpan( p, u, U );
 
- 	const nders = calcBasisFunctionDerivatives( span, u, p, du, U );
 
- 	const Pw = [];
 
- 	for ( let i = 0; i < P.length; ++ i ) {
 
- 		const point = P[ i ].clone();
 
- 		const w = point.w;
 
- 		point.x *= w;
 
- 		point.y *= w;
 
- 		point.z *= w;
 
- 		Pw[ i ] = point;
 
- 	}
 
- 	for ( let k = 0; k <= du; ++ k ) {
 
- 		const point = Pw[ span - p ].clone().multiplyScalar( nders[ k ][ 0 ] );
 
- 		for ( let j = 1; j <= p; ++ j ) {
 
- 			point.add( Pw[ span - p + j ].clone().multiplyScalar( nders[ k ][ j ] ) );
 
- 		}
 
- 		CK[ k ] = point;
 
- 	}
 
- 	for ( let k = du + 1; k <= nd + 1; ++ k ) {
 
- 		CK[ k ] = new Vector4( 0, 0, 0 );
 
- 	}
 
- 	return CK;
 
- }
 
- /*
 
- Calculate "K over I"
 
- returns k!/(i!(k-i)!)
 
- */
 
- function calcKoverI( k, i ) {
 
- 	let nom = 1;
 
- 	for ( let j = 2; j <= k; ++ j ) {
 
- 		nom *= j;
 
- 	}
 
- 	let denom = 1;
 
- 	for ( let j = 2; j <= i; ++ j ) {
 
- 		denom *= j;
 
- 	}
 
- 	for ( let j = 2; j <= k - i; ++ j ) {
 
- 		denom *= j;
 
- 	}
 
- 	return nom / denom;
 
- }
 
- /*
 
- Calculate derivatives (0-nd) of rational curve. See The NURBS Book, page 127, algorithm A4.2.
 
- Pders : result of function calcBSplineDerivatives
 
- returns array with derivatives for rational curve.
 
- */
 
- function calcRationalCurveDerivatives( Pders ) {
 
- 	const nd = Pders.length;
 
- 	const Aders = [];
 
- 	const wders = [];
 
- 	for ( let i = 0; i < nd; ++ i ) {
 
- 		const point = Pders[ i ];
 
- 		Aders[ i ] = new Vector3( point.x, point.y, point.z );
 
- 		wders[ i ] = point.w;
 
- 	}
 
- 	const CK = [];
 
- 	for ( let k = 0; k < nd; ++ k ) {
 
- 		const v = Aders[ k ].clone();
 
- 		for ( let i = 1; i <= k; ++ i ) {
 
- 			v.sub( CK[ k - i ].clone().multiplyScalar( calcKoverI( k, i ) * wders[ i ] ) );
 
- 		}
 
- 		CK[ k ] = v.divideScalar( wders[ 0 ] );
 
- 	}
 
- 	return CK;
 
- }
 
- /*
 
- Calculate NURBS curve derivatives. See The NURBS Book, page 127, algorithm A4.2.
 
- p  : degree
 
- U  : knot vector
 
- P  : control points in homogeneous space
 
- u  : parametric points
 
- nd : number of derivatives
 
- returns array with derivatives.
 
- */
 
- function calcNURBSDerivatives( p, U, P, u, nd ) {
 
- 	const Pders = calcBSplineDerivatives( p, U, P, u, nd );
 
- 	return calcRationalCurveDerivatives( Pders );
 
- }
 
- /*
 
- Calculate rational B-Spline surface point. See The NURBS Book, page 134, algorithm A4.3.
 
- p1, p2 : degrees of B-Spline surface
 
- U1, U2 : knot vectors
 
- P      : control points (x, y, z, w)
 
- u, v   : parametric values
 
- returns point for given (u, v)
 
- */
 
- function calcSurfacePoint( p, q, U, V, P, u, v, target ) {
 
- 	const uspan = findSpan( p, u, U );
 
- 	const vspan = findSpan( q, v, V );
 
- 	const Nu = calcBasisFunctions( uspan, u, p, U );
 
- 	const Nv = calcBasisFunctions( vspan, v, q, V );
 
- 	const temp = [];
 
- 	for ( let l = 0; l <= q; ++ l ) {
 
- 		temp[ l ] = new Vector4( 0, 0, 0, 0 );
 
- 		for ( let k = 0; k <= p; ++ k ) {
 
- 			const point = P[ uspan - p + k ][ vspan - q + l ].clone();
 
- 			const w = point.w;
 
- 			point.x *= w;
 
- 			point.y *= w;
 
- 			point.z *= w;
 
- 			temp[ l ].add( point.multiplyScalar( Nu[ k ] ) );
 
- 		}
 
- 	}
 
- 	const Sw = new Vector4( 0, 0, 0, 0 );
 
- 	for ( let l = 0; l <= q; ++ l ) {
 
- 		Sw.add( temp[ l ].multiplyScalar( Nv[ l ] ) );
 
- 	}
 
- 	Sw.divideScalar( Sw.w );
 
- 	target.set( Sw.x, Sw.y, Sw.z );
 
- }
 
- export {
 
- 	findSpan,
 
- 	calcBasisFunctions,
 
- 	calcBSplinePoint,
 
- 	calcBasisFunctionDerivatives,
 
- 	calcBSplineDerivatives,
 
- 	calcKoverI,
 
- 	calcRationalCurveDerivatives,
 
- 	calcNURBSDerivatives,
 
- 	calcSurfacePoint,
 
- };
 
 
  |