| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299 | 
							- ( function () {
 
- 	/**
 
-  * References:
 
-  * http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html
 
-  * https://learnopengl.com/Advanced-Lighting/SSAO
 
-  * https://github.com/McNopper/OpenGL/blob/master/Example28/shader/ssao.frag.glsl
 
-  */
 
- 	const SSAOShader = {
 
- 		defines: {
 
- 			'PERSPECTIVE_CAMERA': 1,
 
- 			'KERNEL_SIZE': 32
 
- 		},
 
- 		uniforms: {
 
- 			'tDiffuse': {
 
- 				value: null
 
- 			},
 
- 			'tNormal': {
 
- 				value: null
 
- 			},
 
- 			'tDepth': {
 
- 				value: null
 
- 			},
 
- 			'tNoise': {
 
- 				value: null
 
- 			},
 
- 			'kernel': {
 
- 				value: null
 
- 			},
 
- 			'cameraNear': {
 
- 				value: null
 
- 			},
 
- 			'cameraFar': {
 
- 				value: null
 
- 			},
 
- 			'resolution': {
 
- 				value: new THREE.Vector2()
 
- 			},
 
- 			'cameraProjectionMatrix': {
 
- 				value: new THREE.Matrix4()
 
- 			},
 
- 			'cameraInverseProjectionMatrix': {
 
- 				value: new THREE.Matrix4()
 
- 			},
 
- 			'kernelRadius': {
 
- 				value: 8
 
- 			},
 
- 			'minDistance': {
 
- 				value: 0.005
 
- 			},
 
- 			'maxDistance': {
 
- 				value: 0.05
 
- 			}
 
- 		},
 
- 		vertexShader:
 
-   /* glsl */
 
-   `
 
- 		varying vec2 vUv;
 
- 		void main() {
 
- 			vUv = uv;
 
- 			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
 
- 		}`,
 
- 		fragmentShader:
 
-   /* glsl */
 
-   `
 
- 		uniform sampler2D tDiffuse;
 
- 		uniform sampler2D tNormal;
 
- 		uniform sampler2D tDepth;
 
- 		uniform sampler2D tNoise;
 
- 		uniform vec3 kernel[ KERNEL_SIZE ];
 
- 		uniform vec2 resolution;
 
- 		uniform float cameraNear;
 
- 		uniform float cameraFar;
 
- 		uniform mat4 cameraProjectionMatrix;
 
- 		uniform mat4 cameraInverseProjectionMatrix;
 
- 		uniform float kernelRadius;
 
- 		uniform float minDistance; // avoid artifacts caused by neighbour fragments with minimal depth difference
 
- 		uniform float maxDistance; // avoid the influence of fragments which are too far away
 
- 		varying vec2 vUv;
 
- 		#include <packing>
 
- 		float getDepth( const in vec2 screenPosition ) {
 
- 			return texture2D( tDepth, screenPosition ).x;
 
- 		}
 
- 		float getLinearDepth( const in vec2 screenPosition ) {
 
- 			#if PERSPECTIVE_CAMERA == 1
 
- 				float fragCoordZ = texture2D( tDepth, screenPosition ).x;
 
- 				float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar );
 
- 				return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );
 
- 			#else
 
- 				return texture2D( tDepth, screenPosition ).x;
 
- 			#endif
 
- 		}
 
- 		float getViewZ( const in float depth ) {
 
- 			#if PERSPECTIVE_CAMERA == 1
 
- 				return perspectiveDepthToViewZ( depth, cameraNear, cameraFar );
 
- 			#else
 
- 				return orthographicDepthToViewZ( depth, cameraNear, cameraFar );
 
- 			#endif
 
- 		}
 
- 		vec3 getViewPosition( const in vec2 screenPosition, const in float depth, const in float viewZ ) {
 
- 			float clipW = cameraProjectionMatrix[2][3] * viewZ + cameraProjectionMatrix[3][3];
 
- 			vec4 clipPosition = vec4( ( vec3( screenPosition, depth ) - 0.5 ) * 2.0, 1.0 );
 
- 			clipPosition *= clipW; // unprojection.
 
- 			return ( cameraInverseProjectionMatrix * clipPosition ).xyz;
 
- 		}
 
- 		vec3 getViewNormal( const in vec2 screenPosition ) {
 
- 			return unpackRGBToNormal( texture2D( tNormal, screenPosition ).xyz );
 
- 		}
 
- 		void main() {
 
- 			float depth = getDepth( vUv );
 
- 			float viewZ = getViewZ( depth );
 
- 			vec3 viewPosition = getViewPosition( vUv, depth, viewZ );
 
- 			vec3 viewNormal = getViewNormal( vUv );
 
- 			vec2 noiseScale = vec2( resolution.x / 4.0, resolution.y / 4.0 );
 
- 			vec3 random = texture2D( tNoise, vUv * noiseScale ).xyz;
 
- 			// compute matrix used to reorient a kernel vector
 
- 			vec3 tangent = normalize( random - viewNormal * dot( random, viewNormal ) );
 
- 			vec3 bitangent = cross( viewNormal, tangent );
 
- 			mat3 kernelMatrix = mat3( tangent, bitangent, viewNormal );
 
- 		 float occlusion = 0.0;
 
- 		 for ( int i = 0; i < KERNEL_SIZE; i ++ ) {
 
- 				vec3 sampleVector = kernelMatrix * kernel[ i ]; // reorient sample vector in view space
 
- 				vec3 samplePoint = viewPosition + ( sampleVector * kernelRadius ); // calculate sample point
 
- 				vec4 samplePointNDC = cameraProjectionMatrix * vec4( samplePoint, 1.0 ); // project point and calculate NDC
 
- 				samplePointNDC /= samplePointNDC.w;
 
- 				vec2 samplePointUv = samplePointNDC.xy * 0.5 + 0.5; // compute uv coordinates
 
- 				float realDepth = getLinearDepth( samplePointUv ); // get linear depth from depth texture
 
- 				float sampleDepth = viewZToOrthographicDepth( samplePoint.z, cameraNear, cameraFar ); // compute linear depth of the sample view Z value
 
- 				float delta = sampleDepth - realDepth;
 
- 				if ( delta > minDistance && delta < maxDistance ) { // if fragment is before sample point, increase occlusion
 
- 					occlusion += 1.0;
 
- 				}
 
- 			}
 
- 			occlusion = clamp( occlusion / float( KERNEL_SIZE ), 0.0, 1.0 );
 
- 			gl_FragColor = vec4( vec3( 1.0 - occlusion ), 1.0 );
 
- 		}`
 
- 	};
 
- 	const SSAODepthShader = {
 
- 		defines: {
 
- 			'PERSPECTIVE_CAMERA': 1
 
- 		},
 
- 		uniforms: {
 
- 			'tDepth': {
 
- 				value: null
 
- 			},
 
- 			'cameraNear': {
 
- 				value: null
 
- 			},
 
- 			'cameraFar': {
 
- 				value: null
 
- 			}
 
- 		},
 
- 		vertexShader: `varying vec2 vUv;
 
- 		void main() {
 
- 			vUv = uv;
 
- 			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
 
- 		}`,
 
- 		fragmentShader: `uniform sampler2D tDepth;
 
- 		uniform float cameraNear;
 
- 		uniform float cameraFar;
 
- 		varying vec2 vUv;
 
- 		#include <packing>
 
- 		float getLinearDepth( const in vec2 screenPosition ) {
 
- 			#if PERSPECTIVE_CAMERA == 1
 
- 				float fragCoordZ = texture2D( tDepth, screenPosition ).x;
 
- 				float viewZ = perspectiveDepthToViewZ( fragCoordZ, cameraNear, cameraFar );
 
- 				return viewZToOrthographicDepth( viewZ, cameraNear, cameraFar );
 
- 			#else
 
- 				return texture2D( tDepth, screenPosition ).x;
 
- 			#endif
 
- 		}
 
- 		void main() {
 
- 			float depth = getLinearDepth( vUv );
 
- 			gl_FragColor = vec4( vec3( 1.0 - depth ), 1.0 );
 
- 		}`
 
- 	};
 
- 	const SSAOBlurShader = {
 
- 		uniforms: {
 
- 			'tDiffuse': {
 
- 				value: null
 
- 			},
 
- 			'resolution': {
 
- 				value: new THREE.Vector2()
 
- 			}
 
- 		},
 
- 		vertexShader: `varying vec2 vUv;
 
- 		void main() {
 
- 			vUv = uv;
 
- 			gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
 
- 		}`,
 
- 		fragmentShader: `uniform sampler2D tDiffuse;
 
- 		uniform vec2 resolution;
 
- 		varying vec2 vUv;
 
- 		void main() {
 
- 			vec2 texelSize = ( 1.0 / resolution );
 
- 			float result = 0.0;
 
- 			for ( int i = - 2; i <= 2; i ++ ) {
 
- 				for ( int j = - 2; j <= 2; j ++ ) {
 
- 					vec2 offset = ( vec2( float( i ), float( j ) ) ) * texelSize;
 
- 					result += texture2D( tDiffuse, vUv + offset ).r;
 
- 				}
 
- 			}
 
- 			gl_FragColor = vec4( vec3( result / ( 5.0 * 5.0 ) ), 1.0 );
 
- 		}`
 
- 	};
 
- 	THREE.SSAOBlurShader = SSAOBlurShader;
 
- 	THREE.SSAODepthShader = SSAODepthShader;
 
- 	THREE.SSAOShader = SSAOShader;
 
- } )();
 
 
  |